
493
Murray, Ainsworth, & Blessing (eds.), Authoring Tools for Adv. Tech. Learning Env.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands. pp. 493–546.

TOM MURRAY

Chapter 17

AN OVERVIEW OF INTELLIGENT TUTORING
SYSTEM AUTHORING TOOLS:

Updated Analysis of the State of the Art

Abstract. This paper consists of an in-depth summary and analysis of the research
and development state of the art for intelligent tutoring system (ITS) authoring
systems. A seven-part categorization of two dozen authoring systems is given,
followed by a characterization of the authoring tools and the types of ITSs that are
built for each category. An overview of the knowledge acquisition and authoring
techniques used in these systems is given. A characterization of the design
tradeoffs involved in building an ITS authoring system is given. Next the
pragmatic questions of real use, productivity findings, and evaluation are
discussed. Finally, I summarize the major unknowns and bottlenecks to having
widespread use of ITS authoring tools.

1. INTRODUCTION

Intelligent Tutoring Systems (ITSs) are computer-based instructional systems with
models of instructional content that specify what to teach, and teaching strategies
that specify how to teach (Wenger 1987, Ohlsson 1987, Shute & Psotka 1996).
They make inferences about a student's mastery of topics or tasks in order to
dynamically adapt the content or style of instruction. Content models (or knowledge
bases, or expert systems, or simulations) give ITSs depth so that students can "learn
by doing" in realistic and meaningful contexts. Models allow for content to be
generated in real time. ITSs allow "mixed-initiative" tutorial interactions, where
students can ask questions and have more control over their learning. Instructional
models allow the computer tutor to more closely approach the benefits of
individualized instruction by a competent pedagogue. In recent years ITSs have
moved out of the lab and into classrooms and workplaces where some have been
shown to be highly effective (Shute and Regian 1990; Koedinger et al. 1997; Mark
& Greer 1991; Person et al. 2001; Rosé, et al. 2001). While intelligent tutors are
becoming more common and proving to be increasingly effective they are difficult
and expensive to build. Authoring systems are commercially available for
traditional computer aided instruction (CAI) and multimedia-based training, but
these authoring systems lack the sophistication required to build intelligent tutors.
Commercial multimedia authoring systems excel in giving the instructional designer
tools to produce visually appealing and interactive screens, but behind the screens is

494 T. MURRAY

a shallow representation of content and pedagogy. Researchers have been
investigating ITS authoring tools almost since the beginning of ITS research, and
over two dozen very diverse authoring systems have been built. This paper
summarizes the contributions of these systems and describes the state of the art for
ITS authoring tools.

This article is written for two types of readers. First are research and
development personnel who are building ITS and/or ITS authoring tools. They
might ask the question "what methods and designs have been used, and how
successful have they been?" in their efforts to build the next generation of systems.
The second type of reader is the developer or purchaser of instructional software
(intelligent or otherwise) who might ask the question: "what is really available (or
soon to be available) to make ITS authoring cost effective?" I hope both readers
will find this article informative. For those needing an "executive level summary":
1) In the last few years there has been significant progress in the development of ITS
authoring tools and in the understanding of the key issues involved. 2) The
development efforts to date represent many diverse approaches, and it is still too
early to get a sense for which approaches will prove to be the most useful (or
marketable). 3) In general, ITS authoring tools are still research vehicles which
have demonstrated significant success in limited cases, yet have not been made
robust enough to be placed and supported in production contexts or commercial
markets. However, it is encouraging that several systems have been released as
products or are approaching productization, and some relatively large scale
evaluations have taken place. Significant progress has been made since this first
version of this paper was published in 1999.

The paper is organized according to four broad questions that readers might have
concerning ITS authoring tools:

• What types of tutors can be built with existing authoring tools?
• What features and methods do the tools use to facilitate authoring?

• Have the tools been used in realistic situations; have they been evaluated;
are they available?

• What have researchers learned about the process of authoring and the
tradeoffs involved in designing an authoring tool?

The Sections of this paper are sequenced to answer these questions. I first describe
the types of ITSs that have been built with ITS authoring tools. Next I describe the
interface, knowledge representation, and knowledge acquisition techniques that have
been used to allow non-programmers to build ITSs using authoring tools. Then I
report on the pragmatic aspects of ITS authoring in order to locate current work in
the research-to-application spectrum. Finally I discuss a number of general issues
and lessons learned (for example "who should author ITSs?"), and discuss tradeoffs
between power, usability, and fidelity among authoring tools.

AUTHORING SYSTEMS STATE OF THE ART 495

2. A CLASSIFICATION ACCORDING TO TASKS AND TUTORS

Any discussion about authoring tools would be too abstract without some context
describing the tutors that they have been used to build. ITS authoring tools have
been used to build tutors in a wide range of domains, including customer service,
mathematics, equipment maintenance, and public policy. These tutors have been
targeted toward a wide range of students, from grade school children to corporate
trainees. However, the key differences among ITS authoring systems are not related
to specific domains or student populations, but to the domain-independent
capabilities that the authored ITSs have. In this Section I present a classification of
authoring tools based on these capabilities. But before describing a number of ITS
authoring tools I need to mention a related area of work that will not be directly
addressed.

Shells vs. tools. An ITS "shell" is a generalized framework for building ITSs,
while an ITS "authoring system" (or authoring tool) is an ITS shell along with a user
interface that allows non-programmers to formalize and visualize their knowledge.
Inspired by goals of elegance, parsimony, and/or cost effectiveness, software
designers seem naturally driven to write software that is general and reusable. Thus
there have been many papers published describing ITS "shells" that consist of
software architectures, code libraries, or conceptual frameworks that make ITS
construction more efficient for programmers. Though some of these systems
include form-based data entry to support authoring tasks, most of them are either
content acquisition shells or instructional planning shells. For examples, see
Goodkovsky et al., 1994 (Pop ITS shell), Ikeda & Mizoguchi, 1994 (FITS), McCalla
& Greer, 1988 (SCENT-3), Goodyear & Johnson, 1990 (TOSKA), Anderson &
Pelliteir, 1991 (TDK), McMillan et al., 1980 (SIPP), Wasson, 1992 (PEPE), Winne
& Kramer, 1989 (DOCENT), Jona & Kass, 1997 (GBS architectures). This paper
focuses on authoring tools only.

A bags of tricks vs. a shelf of tools. Over two dozen ITS authoring systems
have been built. They differ by the types of domains and tasks they are suited for,
by the degree to which they make authoring more easy or efficient, and by the depth
and fidelity employed to represent the knowledge or skill being taught. Not all of
the designers of these systems would describe their systems as being "ITS authoring
systems." But I include computer-based instruction authoring systems that use AI
representation techniques such as rules and semantic networks, and those that
include models of content and/or teaching strategies. These systems seem to
populate the space of authoring tool features almost uniformly, making it difficult to
cluster them into discrete groups in an effort to summarize the field. In fact, every
system I will describe in one category has important elements from at least one other
category. Since the field is still in a formative stage, this paper is intended to help
the reader envision the next generation of authoring tools, more than to select an
existing one to use. Therefore its organization is more like the description of a "bag
of tricks" that can be mixed and matched to create an authoring tool than a
description of a shelf of completed authoring tools.

496 T. MURRAY

Early ITS authoring systems fell into two broad categories: those based on a
traditional curriculum (or courseware) metaphor and those geared toward device
simulation and embodying a "learning environments" instructional metaphor. The
majority of current authoring tools fall similarly into two broad categories:
pedagogy-oriented and performance-oriented (Murray 1997). Pedagogy-oriented
systems (categories 1, 2, 5, and 7 in Table 1) focus on how to sequence and teach
relatively canned content. Most of them pay special attention to the representation
of teaching strategies and tactics. Performance-oriented systems (categories 3, 4, 6,
and sometimes 5, in Table 1) focus on providing rich learning environments in
which students can learn skills by practicing them and receiving feedback. Most of
them pay special attention to the representation of human problem solving skills or
domain-specific processes or systems (either man made ones such as electrical
components, or natural ones such as the meteorology). In general, performance-
oriented systems focus on feedback and guidance at the level of individual skills and
procedural steps, while pedagogy-oriented systems pay more attention to guidance
and planning at a more global level, looking at the sequence of topics and the need
for prerequisite topics. Some systems have elements of both categories, but those
that do tend not to have very complete or deep representational systems for both
pedagogy and domain processes. Though it is possible to create a system with full
capabilities in both areas, none yet exists. This is probably due to a combination of
the fact that supporting each type of authoring is difficult (and each project has
limited recourses to spend) and supporting each type of authoring requires a very
different kind of expertise.

Table 1: ITS Authoring Tools by Category ([brackets] refer to Chapter numbers)

CATEGORY AUTHORING SYSTEMS
1. Curriculum Sequencing and Planning Swift/DOCENT, IDE, ISD Expert, Expert

CML
2. Tutoring Strategies REDEEM (& COCA) [8], Eon [11], GTE
3. Simulation-Based Learning SIMQUEST [1], XAIDA [2], RIDES[3],

DIAG [5], Instructional Simulator [7]
4. Domain Expert System Demonstr8 [4], DIAG [5], D3 Trainer,

Training Express
5. Multiple Knowledge Types XAIDA [2], DNA [6], Instructional

Simulator & IDVisualizer [7], ID-Expert,
IRIS [9], CREAM-Tools [10], ,

6. Special Purpose IDLE-Tool/Imap/Indie [12], LAT [14],
BioWorld Case Builder, WEAR

7. Intelligent/Adaptive Hypermedia InterBook [13], MetaLinks, CALAT,
GETMAS, TANGOW, ECSAIWeb

AUTHORING SYSTEMS STATE OF THE ART 497

Table 2: ITS Authoring Tool Strengths and Limitations by Category

CATEGORY STRENGTHS LIMITS VARIATIONS
Curriculum
Sequencing and
Planning

Rules, constraints, or
strategies for
sequencing courses,
modules,
presentations

Low fidelity from
student's perspective;
shallow skill
representation

Whether sequencing
rules are fixed or
authorable;
scaffolding of the
authoring process

Tutoring
Strategies

Micro-level tutoring
strategies;
sophisticated set of
instructional
primitives; multiple
tutoring strategies

(same as above for
most systems)

Strategy
representation
method; source of
instructional expertise

Device
Simulation and
Equipment
Training

Authoring and
tutoring matched to
device component
identification,
operation, and
troubleshooting

Limited instructional
strategies; limited
student modeling;
mostly for procedural
skills

Fidelity of the
simulation; ease of
authoring

Domain Expert
System

Runnable (deeper)
model of domain
expertise; fine
grained student
diagnosis and
modeling; buggy and
novice rules included

Building the expert
system is difficult;
limited to procedural
and problem solving
expertise; limited
instructional
strategies

Cognitive vs.
performance models
of expertise

Multiple
Knowledge
Types

Differential pre-
defined knowl.
representation and
instructional methods
for facts, concepts,
and procedures, etc.

Limited to relatively
simple fact, concepts,
and procedures; pre-
defined tutoring
strategies

Inclusion of
intelligent curriculum
sequencing; types of
knowledge/tasks
supported

Special
Purpose

Template-based
systems provide
strong authoring
guidance; fixed
design or pedagogical
principles can be
enforced

Each tool limited to a
specific type of tutor;
inflexibility of
representation and
pedagogy

Degree of flexibility

Intelligent/
Adaptive
Hypermedia

WWW has
accessibility & UI
uniformity; adaptive
selection and
annotation of
hyperlinks

Limited interactivity;
limited student model
bandwidth

Macro vs. micro level
focus; degree of
interactivity

498 T. MURRAY

Proponents of constructivist learning theories (e.g. Jonassen & Reeves 1996) often
criticize pedagogy-oriented tutors and the instructional design theories behind them
as being too "instructivist." Such critics contend that these systems ignore important
aspects of learning such as intrinsic motivation, context realism, common
misconceptions, and social learning contexts. Actually these factors are
acknowledged by most instructional design theorists (Merrill 1983, Gagne 1985,
Reigeluth 1983), but are either seen as not being as important or as being too
complex or incompletely understood to incorporate into instructional planning and
knowledge representation.1

Table 1 enumerates seven categories of ITS authoring systems, grouped
according to the type of ITSs they produce.2 Table 2 describes the strengths and
limitations of each category, along with a summary of how systems within the
category differ. The categories are described below in their particular sequence
because some build upon concepts developed in previous categories.

2.1. Curriculum sequencing and planning

Authoring systems in the Curriculum and Course Sequencing category organize
instructional units (IUs, or "curriculum elements") into a hierarchy of courses,
modules, lessons, presentations, etc., which are related by prerequisite, part, and
other relationships. The instructional units typically have instructional objectives.
Some systems include IUs that address misconceptions or remedial material. The
content is stored in canned text and graphics. These systems are seen as tools to
help instructional designers and teachers design courses and manage computer based
learning.

Intelligent sequencing of IUs (or content, or topics) is at the core of these
systems. To the student, tutoring systems built with these tools may seem identical
to traditional computer-based instruction. Screens of canned text and pictures are
presented, and interactions tend to be limited to multiple choice, fill-in, etc. Of
course, the difference is that the sequencing of the content is being determined
dynamically based on the student's performance, the lesson objectives, and the
relationships between course modules. Because domain knowledge is not
represented in a very "deep" fashion, any arbitrary domain can be tutored (just as a
textbook can be about any domain). But the depth of diagnosis and feedback in
tutors built with these authoring tools is limited by the shallowness of their domain
knowledge representation. This makes them more appropriate for building tutors

1 Historically, instructional design theories were ignored by most ITS researchers in favor of
cognitive learning theories, but in the realm of ITS authoring tools instructional design was a
primary basis for the early systems. Thus I believe the authoring tools research community
was instrumental in promoting the more balanced merger of instructional design and cognitive
theories that we increasing see in recent years.
2 In the case of two relatively large-scale ITS authoring system projects, MITT-Writer and
ICAT, there was insufficient published material for me to include them in my analysis (these
systems are mentioned in an overview of US government sponsored ITS research (Youngblut
1995)).

AUTHORING SYSTEMS STATE OF THE ART 499

that teach conceptual, declarative, and episodic types of knowledge, and less
pedagogically powerful for building tutors that teach procedural or problem solving
skills. Authoring systems in the Curriculum Sequencing category are, generally
speaking, the most "basic," or minimally functional (though each system in this
category has certain very evolved signature features or capabilities). All of the
systems in this category except Swift are "historical" in that they were early
examples that inspired other projects. In particular, the systems in categories 2 and
5 build upon the functionalities of category 1 systems. Swift is a commercial
product that calls itself an authoring tool for "minimalist" ITSs.

2.2. Tutoring strategies

Systems in this category excel at representing diverse teaching strategies. They tend
to be similar to the Curriculum Sequencing systems described above, in that content
is stored in canned text and graphics and domain knowledge representation is
shallow. Systems in this category go beyond Curriculum Sequencing systems to
encode fine-grained strategies used by teachers and instructional experts. Systems
in the Curriculum Sequencing category tend to focus on the "macro" level of
instruction--i.e. the sequencing of topics or modules, while systems in this category
also address the "micro" level of instruction. Instructional decisions at the micro
level include when and how to give explanations, summaries, examples, and
analogies; what type of hinting and feedback to give; and what type of questions and
exercises to offer the student. Systems in the Tutoring Strategies category have the
most sophisticated set of primitive tutorial actions, compared with systems in other
categories. In addition some systems in this category represent multiple tutoring
strategies and "meta-strategies" that select the appropriate tutoring strategy for a
given situation (e.g. REDEEM and Eon). The availability and intelligent
interjection of small grain sized components such as explanations, multiple levels of
hints, and analogies can make the tutor appear quite responsive, at times even
conversational (as in Socratic strategies).

In GTE and COCA authors create instructional rules. In Eon teaching strategies
are defined using procedural flow lines. In REDEEM authors specify strategy
parameters using sliders.

2.3. Simulation-based learning

For tutors built by authoring tools in this category, instruction centers around a
simulation of a man-made process or phenomena. In RIDES, XAIDA, DIAG, and
Instructional Simulator the student is shown a piece of equipment and is asked to
identify its components, perform operating steps, perform maintenance steps, or
diagnose faulty device behavior and fix or replace the implicated parts. These
authoring tools have been used to build instructional simulations of mechanical,
electrical, and hydraulic systems. These types of skills are relatively widespread and
generic, so authoring tools that specialize in this area should be widely usable. The
expert knowledge for component locations and operational scripts is straightforward

500 T. MURRAY

to model. Performance monitoring and instructional feedback is also
straightforward (e.g. "That is not the Termination Switch," and "You should have
checked the safety valve as your next step"). Thus authoring tools can be built
which closely match the needs of the author (and student).3 The most difficult
authoring task with these systems is building the simulation. But once the
simulation is authored, much of the instructional specification comes "for free."
Component location and device behavior "what if" activities can be generated
automatically. However, the device operation procedures must be authored. The
four systems mentioned differ in the complexity of the simulation models that they
can author. While these systems focus mostly on learning procedural skills,
SimQuest focuses more on conceptual knowledge and physical principles. It has
features for providing explanations of phenomena, exploratory and hypothesis
generation learning activities, and instructional sequences based on a "model
evolution" paradigm (White & Frederiksen 1995). SimQuest simulations are based
on a set of equations which constitute a model of a physical process. Though they
are not covered in this paper, there are other simulation-based and model-based
educational software projects that incorporate authoring tools for building models
(see a brief summary in Murray, et al. 2001).

In contrast to the previous two categories of authoring tools, students using tutors
built with tools in this category will be "learning by doing." It is usually assumed
that students have a basic familiarity with important concepts and procedures in the
domain before using the tutor and students immediately start to practice skills.
Specific feedback is given for each skill step, and task difficulty is increased as
students progress.

A major differentiating factor among systems in this category is the depth and
fidelity of the simulation. Authoring tools range from those supporting static
expression-based relationships between device components (XAIDA, which also
supports domains other than device simulation, see the Multiple Knowledge Types
category), to those supporting runnable but shallow simulation models (RIDES), to
those supporting deeper, more causative or cognitive models of how the device
works (SIMQUEST).

2.4. Expert systems and cognitive tutors

An important class of intelligent tutors are those that include rule-based cognitive
models of problem solving expertise. Such tutors, often called model tracing tutors
(Anderson & Pelletier 1991), observe student behavior and build a fine-grained
cognitive model of the student's knowledge that can be compared with the expert
model. Authoring tools have been prototyped for such tutors. I also include in this
category authoring tools which use traditional expert systems (built to solve
problems, not to teach) and produce "value added" instruction for the encoded

3 Equipment diagnosis tasks ("troubleshooting") are more complicated, less standard among
types of equipment, and thus more difficult task to model and teach than operation and
maintenance steps.

AUTHORING SYSTEMS STATE OF THE ART 501

expertise. These systems are similar to model tracing systems, except the expert
system is based on performance competency, rather than cognitive processes. Some
systems include buggy or novice-level rules that capture common mistakes,
allowing the tutorial to give feedback specific to those errors.

Students using these systems usually solve problems and associated sub-
problems within a goal space, and receive feedback when their behavior diverges
from that of the expert model. Unlike most other systems described above, these
systems have a relatively deep model of expertise, and thus the student, when stuck,
can ask the tutor to perform the next step or to complete the solution to the entire
problem. Authoring an expert system is a particularly difficult and time-intensive
task, and only certain tasks can be modeled in this manner.

Demonstr8 allows authors to build an expert problem solver through
demonstration of an example problem solution. D3 trainer and Training Express
add a tutorial component onto an existing expert system (authored with an expert
system shell). DIAG includes an expert model of fault diagnosis strategies.

2.5. Multiple knowledge types

Instructional design theories classify knowledge and tasks into discrete categories,
and prescribe instructional methods for each category. They tend to be limited to
types of knowledge that can be easily defined, such as facts, concepts, and
procedures. Though the knowledge types and instructional methods vary for
different theories, they typically prescribe instruction similar to the following. Facts
are taught with repetitive practice and mnemonic devices; concepts are taught using
analogies and positive and negative examples progressing from easy prototypical
ones to more difficult borderline cases; procedures are taught one step at a time,
with particular attention payed to branching decision steps. Instruction for these
knowledge types includes both expository presentations of the knowledge, and
inquisitory exercises that allow for practice and feedback. Straight-forward
instructional strategies for how to sequence content and exercises, and how to
provide feedback, are defined separately for each knowledge type (for example see
Merrill 1983). The pre-defined nature of the knowledge and the instructional
strategies is both the strength and the weakness of these systems. Domain
knowledge for each knowledge type can be easily represented for authors, who fill
in templates for examples, steps, definitions, etc. (depending on the knowledge
type). The tools support the decomposition of complex skills into elementary
knowledge components. Links between knowledge components can be authored
and used in instruction (e.g. the concepts or facts that support a procedure or a
concept that helps explain another concept). Since instructional strategies are fixed
and based on knowledge types they do not have to be authored. Of course, not all
instruction fits neatly into this framework, but it has significantly wide applicability
(problem solving and other higher order cognitive skills can not be represented in
this way).
Authoring systems in the Multiple Knowledge Types category are diverse in many
respects, but they all use a knowledge/skill classification scheme and represent and

502 T. MURRAY

instruct differentially based on knowledge type. Also, they all cite classic
instructional design literature as part of the basis for their pedagogical approach.
For the student, tutors built with these systems are similar in character to those in the
Multiple Teaching Strategies category. The main difference is for the authors,
whose task is more constrained, and thus both easier and less flexible.

2.6. Special purpose systems

In this category are authoring tools that specialize in particular tasks or domains.
Systems in the Device Simulation and Multiple Knowledge Types categories are
also for particular types of tasks, but systems in the Special Purpose category focus
on more specific, less general tasks. There is a rough principle that authoring tools
tailored for specific tasks or instructional situations can better support the needs of
the student and author for those situations. Systems in this category were designed
by starting with a particular intelligent tutor design, and generalizing it to create a
framework for authoring similar tutors. Authoring is much more template-like than
in other categories of authoring tools. One potential problem with special purpose
authoring is that once a task and its instructional approach have been codified
enough to become a template, the resulting system reflects a very particular
approach to representing and teaching that task; one that may only appeal to a
limited authoring audience. On the other hand, preferred design and pedagogical
principles can be strictly enforced, since the author has no influence over these
aspects. Bell (this volume) calls this approach using a "strong task model" to build
"knowledge rich" authoring tools.

Since the only thing that systems in this category have in common is that they
support particular types of tasks or domains, we can not say anything in general
about the types of tutors built or about students' experience using the tutors. The
IDLE-Tool/Imap/Indie systems build tutors for "investigate and decide" GBS (goal
based scenario) learning environments. LAT builds tutors to train customer service
representatives how to answer product questions. Both of the above mentioned
projects involve learning by doing in role playing environments. BioWorld is a
learning environment for promoting scientific reasoning in the medical domain. Its
authoring tool is a template-based tool allowing teachers to create new medical
cases. WEAR builds tutors in algebra-related domains.

2.7. Intelligent/adaptive hypermedia

As adaptive hypermedia systems and web-based tutors become more sophisticated,
they increasingly incorporate methods and models from the field of intelligent
tutoring. Since these systems and their authoring tools are becoming more
predominant, I have created a separate category for them. The functions of these
systems overlap with those from the Curriculum Sequencing and Tutoring Strategies
categories above (depending on whether the focus is on instruction at the macro or
micro level). The level of interactivity and fidelity available to the student is low for
tutors built with these authoring tools. They are HTML-based, and do not yet

AUTHORING SYSTEMS STATE OF THE ART 503

incorporate highly interactive features available through programming languages
such as Java and Flash. Unlike systems in the other categories, these systems must
manage the hyperlinks between units of content as well as the form and sequencing
of the content itself. The links available to the student can be intelligently filtered,
sorted, and annotated based on a student model or profile (Brusilovsky 1998). Link
filtering can be based on prerequisites, cognitive load, topic appropriateness,
difficulty, etc. Brusilovsky's Chapter 13 in this Volume has a more complete
overview or adaptive hypermedia authoring tools.

3. HOW ARE THE PARTS OF AN ITS AUTHORED?

Having described ITS authoring tools in the concrete terms of what types of tutors
they can build, I will move on to describe features of the authoring tools themselves.
ITSs are often described as having four main components: the student interface, the
domain model, the teaching model, and the student model. Though this
categorization is not always sufficient to describe an ITS, the functionality of ITS
authoring tools can best be described in terms of authoring these four components.

3.1 Authoring the interface

Interface design is the one area where traditional multimedia authoring tools excel
over ITS authoring tools. This is probably because building an interface
construction kit is quite time consuming. Since basic graphics authoring is a "solved
problem" most ITS authoring researchers have not prioritized the effort need to build
full graphics construction tools. However, the experience of our research team has
indicated that customizing the tutorial's interface is a priority for authors (Murray
1998). Also, constraining the student interface to pre-defined screens and layouts
severely constrains the types of tasks and interactions that an ITS can have with the
student.

Three of the authoring systems, RIDES, SIMQUEST, and Eon, allow authors to
construct the tutoring system's interface completely from scratch, using interface
objects such as buttons, text, sliders, imported graphics, movies, and low level
"drawing" objects. The interface objects in these systems are "live," in that they can
be scripted to respond to user and program generated events, and their properties
(color, position, etc.) can be set to depend on other values in the tutor. With the
RIDES system the author can define components, sub-components, and physical
connections such as wires and pipes. In the Eon system authors define graphical
screen 'templates' and the system automatically creates a database for holding the
template contents. For instance if a screen containing a movie, a question, and an
explanation was authored, the author could use a data entry tool to easily fill in the
text and movie names for dozens of these interactive screens.

Features that actively assist the author in designing an ITS interface, for example
by analyzing the interface design for clarity and usability, have not yet been
included in ITS authoring systems. The vast majority of authoring systems assure

504 T. MURRAY

reasonable interface designs simply by pre-defining the student interface--i.e. by not
providing interface design features at all.

Authoring the interface, though more flexible, has the negative side effects of
freeing authors to design poor interfaces, and adding to the list of skills that an
author must have. Building the interface for "user friendly" software can take from
50% to 90% of the entire project resources. The MetaLinks system addresses this
trade-off by allowing the author to customize the layout by selecting from two
menus. The first menu lists purposes of the page (e.g. glossary, explanation, chapter
introduction, etc.) and second menu lists layout types (e.g. pictures in upper right;
first picture above the main text with other pictures half size at the bottom, etc.).
MetaLinks combines these two parameters to determine the overall layout and look
and feel of the page. The REDEEM system allows users to import interactive screen
created with an off-the-shelf multimedia authoring tool (ToolBook).

Systems in the Intelligent Hypermedia category offload the job of displaying the
interface to the web browser. Though no interface authoring is allowed (or needed)
for these systems, the layout capabilities of web browsers make it easy to generate
web pages with a fair degree of adaptability with little effort.

3.2 Authoring the domain model

ITSs contain representations of curriculum knowledge, simulation models, and
problem solving expertise. Authoring tools have been built for each of these domain
model categories, as described below.

Models of curriculum knowledge and structures. Several authoring systems
include tools for visualizing and authoring content networks (including IDE, Eon,
RIDES, and CREAM-Tools). These tools help the author visualize the relationships
between curriculum elements (such as topics, courses, concepts, and procedures)
and allow a bird's eye view of the subject matter. Some tools are limited to strict
hierarchical representations of courses, modules, lessons, topics, etc., but most allow
more free-formed network representations.

Curriculum knowledge can include knowledge about the pedagogically relevant
properties of topics, such as their importance and difficulty. Almost all of the
authoring tools in the Curriculum Sequencing, Tutoring strategies, and Multiple
Knowledge Types categories include the ability to author topic properties. Several
systems (including IDE, IRIS, and Cream-Tools) provide tools for authoring
instructional objectives separately from topics.

Simulations and models and of the world. The level of fidelity of a simulation
is constrained by the representational formalism used for domain modeling. Among
the systems we have mentioned, SimQuest has the "Deepest" modeling framework.
It models continuous physical processes using systems of algebraic equations and
differential equations that can interact as "functional blocks." The next most
sophisticated is the RIDES system which models device component behaviour
determined using event-based based methods (e.g. when the user performs some
event on the interface an action is triggered) and constraint-based methods (the
value of an object property is determined by a mathematical expression). Next in

AUTHORING SYSTEMS STATE OF THE ART 505

sophistication are state-based simulation models, as used by XAIDA and
Instructional Simulator. Components have different states depicted graphically and
simple branching procedures are used to determine what state a component is in.
Instructional Simulator uses a PEAnet (processes, entity, activity network)
representation which includes a simple rule base describing how properties and
events affect elements of a simulated process. This allows authors to easily build
simple cause-and effect simulations.

RIDES and SIMQUEST include sophisticated WYSIWYG tools for building
models of devices and other physical phenomena. In RIDES authors combine
atomic components, such as switches, levers, pipes, electronic black boxes, etc.,
each of which have properties (such as color, voltage, on/off state) and the ability to
connect with other components (via input and output connections). Components are
joined to form larger components. Rules and constraints are authored to specify
how each component affects others (e.g. how a pressure meter value effects a
pneumatic valve position).

While simulations in RIDES are based on device components (and properties)
and their connections, simulations in SIMQUEST are based on an authored model,
i.e. a set of equations. Devices and other physical phenomena are constructed in
SIMQUEST using simple graphical objects, and the properties (size, location, color,
etc.) of these objects are linked to variables in the model. While SIMQUEST is
more cumbersome that RIDES for authoring devices with many parts, SIMQUEST
can more easily model natural phenomena such as in physics and meteorology.

Models of domain expertise. Domain expertise can include several types of
knowledge, including problem solving expertise, procedural skills, concepts, and
facts. Authoring systems in the Curriculum Sequencing, Tutoring Strategies, and
Multiple Knowledge Types categories allow authors to represent simple facts,
relationships, and procedures. Facts and relationships are stored as associations (e.g.
the color of X is Y, A is the capital of B). Simple procedures are stored as a
sequence of steps, and some systems have the ability to author sub-procedures.
Most systems that use content networks incorporate domain information into the
model of curriculum structures. For example, a topic network can relate concepts to
sub-concepts (with Is-a links) and procedures to sub-procedures. This type of
information is both content (i.e. the student should learn the sub-steps of a
maintenance procedure, and the fact that a mushroom Is-a type of fungus) and
curriculum specification (since the teaching strategy may teach about siblings before
parents and sub-steps before general steps).

Procedural expertise for device operation and other procedures is represented
using simple script-like representations with steps, sub-steps, and limited decision
branches. More complicated procedural skills and problem solving skills require the
production-rule-based representation used in expert systems (or a similarly complex
formalism, such as constraints). The PUPS and Demonstr8 systems facilitate the
authoring of production rules (Demonstr8 uses an example-based method described
later). D3 Trainer re-uses the production system rules authored using the D3 expert
system shell (Training Express uses a similar method). Both of these systems
provide authoring support for associating hints and explanations with each

506 T. MURRAY

production rule. LEAP allows users to author dialog grammars, which are similar in
complexity to production rules.

As is the case with other AI systems, the authoring of facts, relationships, and
simple procedures is relatively straightforward. For domain expertise modeled with
rules, grammars, or constraints, the authoring is much more demanding. Authoring
tools for these types of representations require programming or knowledge
engineering skills. (Knowledge engineering is the skill of formalizing knowledge or
procedures into computationally-relevant forms.)

Domain Knowledge Types. As mentioned above, systems in the Multiple
Knowledge Types category distinguish different knowledge types and have different
knowledge representation schemes and different teaching strategies for each
knowledge type. This structure guides and constrains authoring. The DNA system
is used to author symbolic (factual), conceptual, and procedural knowledge. These
knowledge types are related by "what, how, and why" links. For example, an author
creating a curriculum unit for "standard deviation" is prompted to create additional
content describing "how" to calculate it (procedure), "why" it is important (concept),
and "what" it is used for (fact). DNA uses a single representational framework for
its three types (symbolic, procedural, and conceptual): a semantic network that
includes GOMS (goals, operators, methods, and selection rules) inspired link types
to represent procedural and rule-like information as well as more common is-a, part-
of, and causal relationships between knowledge elements.

XAIDA provides maintenance training in four areas: the physical characteristics
of a device, its theory of operation, operating and maintenance procedures, and
troubleshooting. Tools for the last two categories are only partially complete.
Semantic networks are used to represent physical characteristics and
operation/maintenance procedures; causal reasoning schemes are used to represent
theory of operation, and fault trees are used to represent troubleshooting expertise.
CREAM-Tools and IRIS use more elaborate systems. CREAM-Tools use different
vocabularies for learned capabilities vs. behavioral objectives. It uses Gagne's five
categories of learned capabilities, Bloom's six-level classification of learning
objectives (further divided into 31 terms), and a large vocabulary of relationships
between these elements. IRIS uses different vocabularies for the pedagogical
description of domain knowledge vs. the performance specification of domain
knowledge. It also uses both Gagne's and Bloom's descriptive vocabularies.

3.3 Authoring the tutoring model

Tutoring strategies specify how content is sequenced, what type of feedback to give,
when and how to coach, explain, remediate, summarize, give a problem, etc. A
variety of representational methods are used to model tutoring expertise, including
procedures, plans, constraints, and rules. However, the vast majority of ITS
authoring tools include a fixed, i.e. non-authorable, tutoring model. Eon, COCA,
REDEEM, IDE, and GTE allow authoring of the pedagogical model. COCA uses a
rule-based representational method, and the author uses pull-down menus to specify
the right and left-hand components of IF-THEN rules. Eon uses a flowline-based

AUTHORING SYSTEMS STATE OF THE ART 507

graphical programming language that allows the user to author arbitrary
instructional procedures. For both of these systems the flexibility comes at the price
of ease of use, and no guidance is given to help the author create effective tutoring
strategies. REDEEM has a fixed rule set defining the pedagogical behaviour, but
authors can define their own "teaching strategies," which are settings for key
pedagogical parameters such as "amount of student choice," "preference for specific
(vs. general) informationfirst," and "amount of help." For example, a strategy called
"Advanced learners " might have high student choice, start with general information
before teachingspecific information, and help only available on error.

Plan-based systems. Several systems (including IRIS, GTE, IDE, and
REDEEM) include plan-based mechanisms with multi level hierarchical
representation of instructional objectives, strategies, and tasks (various other terms
are used such as goals, events, and actions). For example, the IRIS framework
includes three levels: cognitive processes, instructional events, and instructional
actions. IDE is unique in allowing authors to specify rationales for each planning
rule, so that each rule can be justified by a specific pedagogical theory. The plan
rules in some systems are fixed but IDE and GTE allow authors to type in plan rules
that define a hierarchy of sub-tasks. For example: "To Teach Functions => 1:
Present Function, 2: Teach Linked Processes, 3: Teach Sub-Functions, 4. Present
Summary." The item "Teach Linked Processes" may be further defined using
another rule. The authoring and visualization tools provided for such systems are
minimal, however, and the authoring task requires significant programming or
knowledge engineering skills.

Multiple strategies. Some systems include multiple teaching strategies and
dynamically choose the appropriate strategy based on content and user
characteristics. Systems in the Multiple Knowledge Types and Simulation
categories have a handful of relatively simple teaching strategies, one for each type
of task or knowledge recognized by the system. For example, a different strategy
would be used to teach facts, procedures, and concepts. There is no strategy
authoring for these systems. The REDEEM and Eon systems allow authors to
define multiple strategies and "meta-strategies" for dynamically selecting among
multiple strategies.

Meta-strategies in REDEEM are easily authored. They are defined via a set of
sliders that set key pedagogical parameters (such as the depth of hints, and whether
prerequisites are required). REDEEM steps authors through a set of multiple-choice
questions which determine the conditions under which each defined teaching
strategy is used. For example, for the "Advanced Learner" strategy above the author
would select the conditions (or triggers) for using this strategy, e.g. when the student
is doing well, when the material was previously summarized, and when the content
is not very difficult. Eon meta-strategies combine the authoring of meta-strategy
triggers, as in REDEEM's meta-strategies, with parameterization values, as in

508 T. MURRAY

REDEEM's strategy authoring, with the added flexibility of allowing the author to
define which variables appear in the sliders.4

Tutorial action vocabularies. Those developing systems in the Tutoring
Strategies category (and many ITS "shells") have developed elaborate vocabularies
for describing instructional methods. Tutoring strategies or rules are then used to
determine the type of action needed at any given time. Example tutorial actions
include hint, explain, remediate, summarize, practice, select-a-topic, and reflect-on-
exercise. Most such systems have a layered vocabulary in which some actions
expand into other actions (e.g. active-prior-knowledge expands into recall-prior-
knowledge and/or use-prior-knowledge). The GTE system, for example, has several
hundred items in its library of instructional tasks and methods. (See Mizoguchi et a.
1996, Van Marcke 1992, and Murray 1996b for example vocabularies, ans see
Section 5.6 on ontologies.)

3.4 Authoring the student model

Almost all of the systems mentioned in this paper use "overlay" student models; i.e.
topics or procedural steps are assigned a value based on student performance.
XAIDA and Eon allow the author to define misconceptions as well as topics, so that
the tutor can evaluate and remediate common errors. Demonstr8 seems to be the
only system using a "runnable" student model (i.e. one that can be used to predict
and simulate student behavior). Various AI modeling techniques have been
incorporated into ITS student models, including fuzzy logic (Goodkovsky et al.
1994) and Bayesian networks (Collins et al. 1996), but none have been incorporated
in to ITS authoring systems yet. Eon seems to be the only system that allows the
student model to be authored, i.e. it allows the author to specify how the values of
topics are calculated based on student responses and actions. A "layered overlay"
student model is used, which includes overlay values at several layers: interface
events, presentations, topic levels, topics, and lessons (in contrast to other systems
that have only one layer for topics). The author specifies simple expressions at each
level that define how the overlay values at one level are calculated based on the next
lower level.

Some systems use user modelling in unique ways. With RIDES authors can
create prototype student models for tutorial testing. The WEAR system contains a
model of the teachers goals, expertise level, interests, preferences for tool settings,
and teaching methods (e.g. a preference for quizzes to be given regularly to
students). It uses this model to customize the authoring session by giving the
teacher context-sensitive feedback during authoring.

4 Not all of REDEEMs meta-strategy capability has been implemented and tested with users.

AUTHORING SYSTEMS STATE OF THE ART 509

4. WHAT AUTHORING AND KNOWLEDGE ACQUISITION METHODS
HAVE BEEN USED?

Next I will discuss general methods used by authoring systems to simplify and
automate authoring and knowledge acquisition. These methods are general, in that
they could be used to improve authoring for any of the four main parts of an ITS
described above, and could be used in an authoring tool for any of the seven
categories of authoring tools described earlier.

Authoring tool goals. Before enumerating the authoring methods used, I will
summarize the overall goals that motivate these methods. Generally speaking,
authoring tools have these goals, in rough order of importance or predominance:

• Decrease the effort (time, cost, and/or other resources) for making intelligent
tutors;

• Decrease the skill threshold for building intelligent tutors (i.e. allow more
people to take part in the design process);

• Help the designer/author articulate or organize her domain or pedagogical
knowledge;

• Support (i.e. structure, recommend, or enforce) good design principles (in
pedagogy, user interface, etc.);

• Enable rapid prototyping of intelligent tutor designs (i.e. allow quick
design/evaluation cycles of prototype software).

• Another goal is to use the rapid prototyping capability of authoring tools to
evaluate alternate instructional methods and add to our inadequate body of
understanding of how to match instructional methods with learning
scenarios.5

Scaffolding knowledge articulation with models
Embedded knowledge and default knowledge
Knowledge management
Knowledge visualization
Knowledge elicitation and work flow management
Knowledge and design validation
Knowledge re-use
Automated knowledge creation

Authoring tools achieve these goals using a number of methods or features. Most of
the methods address several of the above goals (for example, a feature that helps the
designer articulate a teaching strategy will also decrease the effort and skill

5 Yet another possible goal is helping the author learn something about pedagogy,
instructional design, or knowledge representation, and thus become a better author as they use
the system.

510 T. MURRAY

threshold of building a tutor). I describe eight methods in detail, listed in the box
below, and then briefly mention several other methods or capabilities seen in
authoring tools.

4.1. Scaffolding knowledge articulation with models

ITS Authoring is both a design process and a process of knowledge articulation.
The most significant method that authoring tools employ to allow non-programmers
to build tutors is to scaffold the task by incorporating a particular model or
framework. Simplification by restricting the universe of what can be built is a
somewhat obvious method since that is what all software applications do (e.g. an
electronic address book is easier to use than a database application). Providing
authors with clear frameworks or templates helps them organize and structure the
authored information. Though obvious, it is worth highlighting because one of the
major differences between authoring tools is the degree to which their models
constrain the product (see the later Section on design tradeoffs).

A significant part of authoring an ITS (or any instructional system) is the
systematic decomposition of the subject matter into a set of related elements (usually
a hierarchy). Each authoring system provides tools or cues which assist the author
in this (usually top-down) process of breaking down and elaborating the content to
the necessary level of detail according to a particular model of instructional elements
and their relationships. Such "content analysis" can be distinguished from "task
analysis" and "cognitive task analysis." Content analysis tools help authors
decompose their declarative knowledge of facts, concepts, procedures, and
principles. The DNA Chapter (6) describes a system for doing content analysis of
factual, conceptual, and (simple) procedural knowledge. Task analysis tools help
authors articulate procedures and action sequences. For example tools in
Demonstr8, Instructional Simulator, and RIDES allow domain experts to
demonstrate a procedure which is then generalized. Cognitive task analysis tools
help experts articulate problem solving and other thinking skills. For performance-
oriented tutors, the most significant task is in articulating and representing expert
performance. Ritter et al. (in this volume) say that "good task analysis is essential in
creating an effective learning system [yet] little effort has gone into authoring
systems for task analysis." Ritter et al. describe efforts to do cognitive task analysis
for model tracing tutors.

Some systems, particularly in the adaptive hypermedia category, minimize the
use of authoring tools by allowing authors to enter content using a standard word
processing application and a "mark-up" system or language. Characteristics of
content such as its place in a content hierarchy, its prerequisites, its difficulty, etc.
can be typed into a word processor and tagged in one of two ways (see Brusilovsky
in this Volume). The first method is to mark the text (in Microsoft Word) using
styles, as is done in the InterBook project. The second method is to mark the text
with special symbols (e.g. "<<*difficulty-topic*>>") as is done in the AHA system.
This method has the benefit of being simple and no new tools have to be developed

AUTHORING SYSTEMS STATE OF THE ART 511

or used. It has disadvantages including the need to memorize the mark-up language
and being susceptible to typographical errors in the mark-up.

4.2. Embedded knowledge and default knowledge

One way to make authoring easier and more powerful is to embed knowledge right
into the system. "Embedded knowledge" means knowledge that is pre-wired and
non-authorable. This knowledge can be passive or active. Passive knowledge is
knowledge that is implied as part of the structure or constraints imposed by an
authoring system. For instance the systems in the Multiple Knowledge Types
category have instructional design principles embedded into their structure (e.g. that
concepts have necessary and sufficient attributes). Authoring systems that highly
constrain ITS design, such as those in the Special Purpose category, contain
substantial passive embedded knowledge. (And see the discussion in Section 4.7 on
knowledge re-use, which is similar to embedded and default knowledge.)

Active embedded knowledge is runnable and produces some result. For example,
REDEEM contains a sophisticated rule-based instructional strategy that the author
can effect through the use of strategy parameters, but otherwise can not alter.
XAIDA uses embedded expertise to generate 19 different types of practice questions
for procedural knowledge. The author can specify when to use each type for a
particular instructional module.

Special Purpose systems and several others (including XAIDA and REDEEM)
make use of reasonable default values that allow the author to postpone entering
some information but still be able to test-run the tutor. Default values in templates
can also provide examples of the type of information to be entered, and thus be
informative as well as functional. In REDEEM even though the author can modify
the teaching strategy, the system has a robust default tutoring method so that a tutor
can be authored and run without ever defining teaching strategies. IDLE-Tool
scaffolds authoring using a "guided case adaptation" method. Associated with every
data-entry template screen is sample input from a prototypical IDLE tutor. Thus
authoring is then more like adapting a similar case to fit the needs of a new tutor
than starting from scratch. The system, as a special purpose authoring tool, also
contains a specific model of the investigate-and-decide task (for example, the
investigate task is composed of parts: decide on what sample to take, obtain the
sample, determine the analysis method, do the test, interpret the results) and a
detailed domain-specific taxonomy of types of samples, tests, and results to help
guide the authoring process.

4.3. Knowledge management

ITSs are elaborate systems and authoring them involves managing a large amount of
complex information. A number of common user interface techniques are used by
authoring systems to assist with knowledge management and organization.
Simplifying input through the use of templates, data entry forms, and pop-up menus

512 T. MURRAY

is quite common. Whenever the range of possible input values can be limited to a
finite set, tools should be provided to allow authors to choose rather than type.

ITSs are particularly difficult to author because of the many diverse and
interconnected types of information they contain. A primary tenet of ITS design is
to have separate representations of content (what to teach) and tutoring strategy
(how to teach it), but these can not be made completely independent. Even if a
system successfully encapsulates certain aspects in independent modules there are
still complex conceptual relationships that the author must be aware of. For
example, the structure of the student model depends on the structure of the domain
model; the form of the teaching strategies depends on the structure of the domain
model; the actions in the teaching strategies depend on the form of the tutor's student
interface. Navigation aides that let authors move between various related pieces of
information and different representations of the same information have been
implemented. For example, if different parts of a tutoring strategy refer to topics,
student model rules, and interface components, the author should be able to click on
the associated item in the strategy authoring tool and be brought directly to the topic
authoring tool, student model authoring tool, or interface authoring tool(this is done
in Eon and CREAM-Tools).

Tools that allow authors to zoom in and out between the details and the big
picture can help manage large information spaces. Object browsers, which allow
authors to scroll through all of the objects of one type and inspect properties and/or
relationships with other objects are available in several of the systems (as exist in
RIDES, D3 Trainer, IRIS, Eon, SimQuest, and CREAM-Tools). Tools for
managing evolving software components and versions are important to most off-the-
shelf software engineering design environments, but these features have not yet been
incorporated into ITS authoring tools.

4.4. Knowledge visualization

Perhaps the most powerful way to help authors understand and comprehend the
large amounts of complexly interconnected knowledge is with powerful
visualization tools. Unfortunately, building the user interface is usually far and away
the most labor-intensive part of programming any interactive software. The level of
interactivity and visualization in ITS authoring tools is still quite primitive as
compared with off-the-shelf productivity software (with the exception of RIDES and
Eon, which have fairly sophisticated interface design tools).

LAT has tools that help authors visualize conversational grammars. LAT's
grammars, which represent how a customer contact employee should respond to
service calls of various types, are composed of individual scripts that define the
possible actions (things to say to a customer) and decisions points of a thematic unit
in the conversation (such as "processing a discounted sales order"). Each script can
invoke other scripts. A relatively simple set of scripts can result in a large and
complex set of possible conversational scenarios. LAT provides visualization tools
that allow the author to see both the static structure of the scripts and the run-time

AUTHORING SYSTEMS STATE OF THE ART 513

dynamics that simulate possible tutorial scenarios. LAT designers also stress the
importance of providing multiple views of authored content.

Topic or curriculum network tools are the most common knowledge
visualization tools in ITS authoring. Little currently exists to allow authors to
visualize teaching strategies. Eon uses a highly visual flow-line metaphor for
authoring tutoring strategies. Strategy authoring in REDEEM consists of setting
parameters, so strategies can be easily visualized with a screen of sliders and radio
buttons.

4.5. Knowledge elicitation and work-flow management

Knowledge acquisition is widely acknowledged as the limiting factor or bottleneck
in building AI systems. A number of techniques have been used for extracting
knowledge from experts, most of which are "manual" methods that involve a
knowledge engineer interviewing or observing the expert (Hoffman 1987).
Software tools have been developed to scaffold or automate some knowledge
acquisition (Boose 1988; Shaw & Gaines 1986). Many of the automated techniques
use contrived tasks such as sorting or ranking to find conceptual dependencies,
logical entailments, or other patterns in the data, which are not generally applicable
to acquiring domain or teaching knowledge for ITSs. However, the method of
interactive elicitation of knowledge to fill in a pre-structured knowledge base has
 been used in ITS authoring, as described below. As mentioned previously, using an
authoring tool to build an ITS involves both knowledge acquisition and design
processes. Authors need to be supported not only in filling in a knowledge base, but
in the overall ITS design process. This includes designing the interface, domain
model, and teaching strategies; conceptualizing the interaction among
several knowledge bases; and the iterative process of user testing and refinement.
Interactive prompts and dialogs can help with work-flow management (or
"performance support"), as well as knowledge elicitation.

ISD-Expert (an early precursor to Instructional Simulator) led the author through
a sometimes excruciatingly long dialog to create an entire course in a top-down
manner. The dialog started with general questions such as "what is the title of the
module?" and "what is the average motivation for the target audience?" Then a
series of questions fleshed out the content and behavioral objectives in a top down
fashion, and included questions for each content unit such as "which of the
following describes what the student will learn: a. What is it? b. How to do it; c.
How does it work?" The potential benefit of this system was that, since the
authoring involves responding to specific prompts, the author did not have to make
any high-level design decisions (only low level and concrete decisions). But there
were two serious drawbacks to the system. First, authors felt too constrained by the
fixed sequence of data entry. The design of complex systems usually requires a
mixture of top down and bottom up design (i.e. "opportunistic" design). The second
problem with such highly constrained dialogs is that the more a system constrains
data entry the more essential it is that the underlying model be accurate and
complete. But instructional theories are neither entirely accurate nor entirely

514 T. MURRAY

complete, and each author may have her own style or preferences. It is often better
for a system to offer suggestions but allow the author to override the default design
decisions. REDEEM's meta-strategy authoring tool uses an automated knowledge
elicitation dialog that is less restrictive. First, the dialog is limited to defining the
meta-strategy parameters for a particular strategy, and the author chooses when to
initiate this dialog. Second, the dialog consists of a series of screens rather than a
series of text-based questions. Each screen has a data entry form for several
parameters, and includes default choices for these parameters. REDEEM includes an
agenda mechanism that keeps track of incomplete authoring tasks and prompts the
user to complete them.

DNA uses a semi-structured interactive dialog to elicit domain knowledge from a
SME (subject matter expert) (a process called cognitive task analysis). As
mentioned earlier, DNA can elicit curriculum elements of three interrelated types:
factual ("symbolic knowledge"), procedural, and conceptual. Thus, as the SME is
defining a curriculum element he is prompted for the existence of related facts,
concepts, and procedures. Questions such as "What is the definition of [a term used
in a procedure]" and "Why is [some fact] important" prompt the SME to continue to
flesh out the content to include all three knowledge types. The process is called
"semi-structured" elicitation because the questions are presented as options on the
design screen, allowing the author to choose which one to answer next (and which
ones to ignore).

Expert-CML is designed to scaffold the instructional design process by
providing advice that is sufficient for the novice user but does not hinder the expert
user. A rule-base of over 100 rules provides advice in two forms. The first suggests
what to do next (similar to DNA above) and the second points out possible errors in
the tutor (as discussed in the next Section). The advice is shown in a status bar at
the bottom of the screen, where the author can use it or choose to ignore it. Also, the
author can turn off certain instructional design rules to permanently override the
system's suggestions.

4.6. Knowledge and design validation and verification

Each authoring system makes different compromises along the spectrum of free-
form design to constrained design. More open-ended systems allow for more
flexibility in both the form of the content and the sequence of steps taken to design
the tutor. However, the more flexibility given to the author the higher the
probability that they will enter something inconsistent, inaccurate, or something that
is at odds with the principles of good instructional design. Special purpose
authoring tools can ensure content validity by tightly constraining what is entered.
One way to allow flexible authoring while maintaining quality is to allow the author
to enter what she wants in the way that she wants, but to include mechanisms that
check the authored information for accuracy, consistency, completeness, and
effectiveness. As mentioned above, the Expert-CML system includes an expert
system that offers this type of content evaluation. For example, rules exist that
inform the author of the following: when the author's estimate of the time to

AUTHORING SYSTEMS STATE OF THE ART 515

complete a lesson is at odds with the accumulated times given for the component
parts; when a summary or introduction might be needed to break up a long sequence
of new material; when the objectives of a lesson are not adequately covered by the
lesson's instructional components; and when a lesson's general cognitive level
(according to Bloom's Taxonomy) does not match with the cognitive levels of the
lesson's objectives.

The DNA system deals with content accuracy and completeness by facilitating
the process of having several SMEs review the knowledge structures authored by the
primary author/SME. The reviewing SMEs can edit and comment on the original
knowledge base. The ECSAIWeb system allows authors to simulate learning paths
to check the validity of the curriculum model. D3-Trainer is the only system that
validates authored information by matching it with a case base of previously
authored examples.

Inconsistencies in authored information that manifest at run time might be
invisible during authoring. By allowing teachers to match teaching strategies to
prototypical student attributes, REDEEM supports teachers in understanding the
consequences of the teaching strategies. RIDES includes a consistency checker and
an integrated debugger/stepper that allows authors to run and debug their device
simulations. It also lets authors create prototype student models for validation
testing.

4.7. Knowledge re-use

Authoring tools have the potential to increase the efficiency of building ITSs
through re-use of common elements. To date most ITS authoring tools have not
been used to build enough ITSs to experience this benefit. Realizing re-use would
require a resource library structure, where authored topics, activities, strategies,
interface components, and/or domain knowledge could be stored independently from
a tutor, and loaded from this library into any tutor. Sparks et al (1999--- the LAT
system) discuss the implications of object libraries for work reduction, reduced
maintenance effort; and increased consistency among tutors. However, they note
that supporting re-use may have considerable costs in terms of system complexity
and ease of use.

REDEEM is built to take advantage of courseware libraries. The content and
interactive screens of a REDEEM ITS are not authored using REDEEM, but are
authored in either html or. ToolBook, an off-the-shelf multimedia authoring tool.
This authored content is exported to a library and from there it is imported by
REDEEM. Component libraries in SIMQUEST included reusable interface
components as well as reusable content objects. D3 Trainer keeps a library of actual
cases for re-use, and SimQuest has a library of content from past authors (also see
Section 5.7 on interoperability and re-use).

516 T. MURRAY

4.8. Automated knowledge creation

Some ITS authoring systems infer or create new knowledge or information from
scratch, saving the author from having to derive, articulate, and enter this
information. RIDES and Demonstr8 use example-based programming techniques to
infer general procedures from specific examples given by the author. RIDES creates
a device's operational procedure by recording the author's actions as he uses the
device simulation to illustrate the procedure. Demonstr8's method, which
generalizes the elements of the authors actions to produce expert system production
rules, is more powerful but potentially has more limited application. The DIAG
system infers a large body of device fault diagnosis information from a relatively
small number of failure consequences it captures by analyzing the device model
prepared by the author.

Systems in the Device Simulation and Expert System categories are
sophisticated enough to generate new problems and their solutions from general
principles or rules, thus saving the author from having to enter every problem and its
solution.

4.9 General Authoring Features

Though the authoring systems described in this paper have a variety of features, a
number of features have emerged as being generally important to robust usability, as
described below.

1. WYSIWIG editing and rapid testing. Authors should be able to easily see
and test both the static visual elements of the tutor and the dynamic run-time
behavior of a tutor. Easy movement back and forth from editing to test-run modes
facilitates rapid prototyping.

2. Flexible, opportunistic design. ITS authoring tools should be designed to
work best for those who have had some training. Features that make it easy for a
first-time user to get to work should not get in the way of serious longer term use.
Tools should allow for a mixture of top down (starting with the abstract curriculum
structure) and bottom up (starting with specific screens and content) authoring for
different design styles.

3. Visual reification. The conceptual and structural elements of a
representational formalism should be portrayed graphically with high visual fidelity
if ITS Authoring systems are to be used by non-programmers. Such user interfaces
relieve working memory load by reifying the underlying structures, and assist long
term memory by providing reminders of this structure. Also, multiple views (visual
perspectives) of information are often needed.

4. Content modularity and re-usability. Instructional content should be
represented and authored modularly so that it can be used for multiple instructional
purposes. Include library structures for saving reusable components. Provide
productivity tools that capitalize on repetitive or template-like content. Provide
tools that make it easy to browse, search for, and reference content objects.

5. Customization, extensibility, and scriptabilty. A tool cannot anticipate
everything a designer will want. All modern design and authoring software provides

AUTHORING SYSTEMS STATE OF THE ART 517

for extensibility and scripting. Scripting allows authors with moderate skills to
create "generative" ITSs that construct problems, explanation, hint, etc. on the fly.

6. Undo! Mundane features such as Undo, Copy/Paste, and Find can be
extremely time consuming to build into complex design software such as authoring
tools, yet such features are essential components of all robust usable software.

7. Administrative features. Only a few of the authoring tools (including
RIDES and SimQuest) have administrative facilities for such things as class
rostering, grade analysis and statistics, and generating progress reports, such features
may be essential to the eventual adoption of ITSs into mainstream education.
CREAM Tools is the only system so far to support collaborative authoring with
rights management and access security features.

To the above list I will add the following which, though not as generally
accepted, I believe to be important for building authoring tools that are both usable
and powerful (these items are discussed in more detail in Chapter 15 Section 5.4):

8. Include customizable representational formalisms. An authoring system
will be based on some underlying representational formalism, and any such
formalism will satisfy the needs of authoring some types of tutors yet not be
appropriate for authoring other tutors. To achieve greater flexibility, authoring tools
should include the ability to customize the representational formalism (see Section
5.6 on ontologies and meta-authoring).

9. Anchor usability on familiar authoring paradigms, and facilitate
evolution to more powerful paradigms. For those used to building traditional
computer-based instruction, building intelligent tutors requires a conceptual shift
from "story board" representations of content to more modular knowledge based
representations (Murray 1996). It is useful to have some ITS authoring tools have a
look and feel similar to common off-the-shelf CAI authoring tools, and to provide
features which allow a smooth transition from traditional authoring paradigms to
authoring more powerful intelligent tutors.

10. Facilitate design at a pedagogically relevant level of abstraction. Provide
tools which allow subject matter experts to author using primitives at the
"pedagogical level" as well as the media level (Murray 1996). Media level primitive
are "graphic," "button," mouse click, etc. Objects at the pedagogical level have
instructional meaning, for example "hint," "explanation," "topic," "prerequisite," and
"mastered."

The commercially available and heavily used systems tend to have more of these
features. For example, RIDES has multiple levels of undo/redo, copy/pasting, Find,
a consistency checker, and an integrated debugger that lets authors step through a
simulation execution to evaluate run time bugs. It also includes an instructor
administrator module. SimQuest has an online help manual, a context sensitive
advice tool (a hypertext on-line manual), authoring Wizards (step by step procedural
help), a content re-use library, a scripting language, and administrative reporting
features.

518 T. MURRAY

5. HOW ARE AUTHORING SYSTEMS BUILT? -- DESIGN PRINCIPLES

In the previous Sections I have characterized the range of tools and methods used by
ITS authoring systems. The wide variation among these systems should be evident
to the reader. The differences are in part due to different theories and models of
knowledge and instruction, but in large part can be attributed to different priorities
and design tradeoffs. If one were in the (unrealistic) position of choosing among all
of these authoring tools for a specific job, or in the position of intending to design a
new ITS authoring tool from scratch, how would one decide which of the tools,
methods, and features were most important? Trying to build an authoring tool that
incorporates the "the whole enchilada" is practically impossible, not only because of
the prohibitive cost and complexity, but because the design decisions these systems
are based on are at odds with each other. For instance, increasing the
flexibility/power of a system comes at the cost of usability.

5.1 A space of design tradeoffs

Figure 1 illustrates the space of factors leading to design tradeoffs for ITS authoring
systems, including breadth, depth, learnability, productivity, fidelity, and cost.6

Domain
Model

Tutoring
Strategy

Student
Model

Learning
Envrnmnt.

Power/ Breadth

Flexibility Depth

Learnability

Usability Productivity

Fidelity

Cost

[The design space has 24 (6x4)

independent dimensions or axes.]

Figure 1: ITS Authoring Tool Design Tradeoffs

Overall, Power/flexibility and Usability are usually at odds with each other, since
simplicity tends to correlate with usability. As shown in the Table, power/flexibility
has two aspects: breadth (scope) and depth of knowledge. Breadth is how general
the framework is for building tutors for diverse subject areas and instructional
approaches. Knowledge depth is the depth to which a system can reason about and
teach the knowledge, and the depth to which it can infer a student's knowledge and

6 The important metric of “instructional effectiveness” is not included in our metrics, because
this depends very much on how the authoring tool is used to produce a tutor. However it is
also true that the design of an authoring tool can have a tremendous effect on the instructional
effectiveness of the systems it is used to build.

AUTHORING SYSTEMS STATE OF THE ART 519

respond accordingly. Breadth and Depth are often at odds, because one must often
limit the generality of a system to be able to represent deep causal knowledge.
Usability also has two aspects: learnability and productivity. Learnability is how
easy a system is to learn how to use. Productivity is how quickly a trained user can
enter information and produce a tutoring system. Learnability and productivity are
often at odds, since a system that is designed to be picked up quickly by novices
may not provide the powerful features that experienced users need to efficiently
produce large systems. Fidelity is the degree to which a tutor perceptually and
operationally matches its target domain.7 A 3-D immersive environment has more
visual fidelity than a 2D simulation. A learning environments that allows the
student to directly practice a task has more fidelity than one that merely describes
and asks questions about the task. Fidelity can be closely related to depth, since
deeper knowledge facilitates more realistic interactions, but it is possible for a
system to have shallow knowledge and high fidelity. Cost refers to the amount of
resources needed to build the authoring system (for this discussion the availability of
personnel, expertise, and time are included in this category). I will not say more
about cost except to note the obvious fact that the resources available to a software
project greatly effect design decisions. Figure 1 illustrates that all of the design
factors mentioned above come into play for each ITS component separately---
domain model, tutoring strategy, student model, and learning environment. For
example, an authoring system can have a highly usable tool for authoring shallow
student models and a not so usable tool for authoring deep teaching strategies.
Additional evaluation criterion have been proposed. Ainsworth (Chapter 8 in this
Volume) adds: 1) the ability of an authoring tool to successfully represent an
expert's teaching strategies (and, by extension, domain knowledge), 2) the
effectiveness of the resulting ITSs, and 3) the ability of the tools (through the
authoring process) to help educators reflect on, share, and expand their own
knowledge of how to teach in their subject area.

The design space for ITS authoring tools is indeed huge. There is rough
consensus on the nature of the tradeoffs involved, but not on how to balance those
tradeoffs to produce the most effective and usable authoring systems. Questions that
must be addressed include:

• How much should the author be constrained to a particular (favored)
pedagogical model?

• Who are the prototypical authors who will use the system?

• What types of knowledge and skills should be modeled by the system?
• What is the source of the teaching and domain expertise?

These questions must be answered to make the design decisions and compromises
involved in building an ITS authoring tool. Each authoring tool, no matter how
general, will embody particular assumptions and models and thus be more

7 Fidelity, depth, and cost are qualities of the tutor that an authoring system produces, while
all of the other design factors are about the authoring system itself.

520 T. MURRAY

appropriate for building certain types of ITSs than others. Before designing an ITS
authoring tool it is best to be as explicit as possible about the nature of the ITSs to be
built. I discuss some of the design decisions in more detail in the following
Sections.

5.2 General or special purpose authoring systems?

One of the most active areas of disagreement among the authoring tool research
community concerns the appropriate degree of generality for an authoring system.
For example, the LAT system is designed to only produce tutors to train customer
service personnel how to respond to customer inquiries. It is a general tool in that it
can be used to create a customer service ITS for a variety of products. An authoring
tool that specializes in producing a very particular type of ITS has many benefits. In
principle, by severely constraining the universe of what can be designed, an
authoring system can have higher usability, higher fidelity, more depth, and be more
efficient. More constrained systems make it less likely for authors to enter incorrect,
inconsistent, or pedagogically poor content or teaching methods.

IDLE-Tool is designed to build tutors for "Investigate and Decide" learning
environments. Bell (1998, and Jona & Kass 1997) proposes a suite of special
purpose authoring tools, each for learning a particular type of complex task, such as
Investigate and Decide, Run an Organization, and Evidence Based Reporting. In
Investigate and Decide environments learners are supported in gathering data about
a realistic case or scenario (such as a medical diagnosis), interpreting the data,
taking some action based on their hypothesis (such as prescribing medication), and
receiving feedback about their action (such as whether it helped the patient). The
IDLE authoring tool provides the author with a fixed template for representing the
outcomes, feedback, reference informant, and graphics. The task structure and the
pedagogy for teaching about the task are predefined based on (presumably) sound
instructional principles. A formative study found the tool to be too constraining. Its
fill-in-the blanks style did not support the kind of "big picture" view of the
instructional scenario that can be important in designing instructional scenarios.
Bell and others are continuing to work toward authoring tools that tightly constrain
the authoring process but include adequate flexibility.

There are several issues related to tool generality. First, although "Investigate
and Decide" seems to be a very general type of task, the authoring system embodies
a very specific interpretation of that task and a fixed pedagogical model. Assuming
there are a large number of educators (mostly science and technology educators)
who would be interested in building (or using) an Investigate and Decide tutor for
some topic, it is not clear how many of these would find IDLE-Tool's specific model
agreeable. Bell's formative study will lead to more flexible and customizable
systems, such as IMAP, which will inevitably require more skilled authors. We
can't yet say where the most appropriate generality vs. usability line should be drawn
for these types of systems, but every new data point will help.

The LAT system paints a slightly clearer picture. Its conversational grammar
approach to customer service training seems more certain to be widely usable than

AUTHORING SYSTEMS STATE OF THE ART 521

IDLE-Tool's template-based approach to Investigate and Decide types of inquiry
learning. This is partly because LAT has a deeper and more general representation
of the task. But it is also because the customer contact task is more easily defined. I
think that special purpose authoring tools will find much wider appeal in "training"
applications than "educational" applications. With training applications there is
wider agreement on the nature of the task and what the behavioral objectives are, but
in educational applications (which tend to address higher order thinking and skills)
there is much less agreement over exactly what and how to teach. The authoring
tools in the device simulation category are a good case in point. The task of training
someone how to operate and understand (at a basic level) how a piece of machinery
works is very general and there is a fair degree of agreement concerning effective
training approaches. Consequently, the RIDES system has seen the widest
application of any of the authoring tools.

Research with XAIDA is pushing the generality vs. usability issue in interesting
directions. Its target user is much less sophisticated than RIDES', which also
teaches about device operation and maintenance. This has lead to a number of
design simplifications aimed at usability. For instance, RIDES represents
component interdependencies in terms of constraints and event results, while
XAIDA uses a less powerful but more felicitous cause-effect framework. Compared
to RIDES and the systems in the Domain Expert System category, XAIDA has a
relatively shallow knowledge representation (but it is still runnable or executable
knowledge---i.e. the system has limited "understanding" of what it is teaching). If
looked at separately each of XAIDA's four knowledge types (physical
characteristics, theory of operation, operating and maintenance procedures, and
troubleshooting) has a relatively shallow representation. Yet its incorporation of
four different knowledge types adds a degree of power and generality. Thus
XAIDA has been used to prototype tutors in a number of domains, including several
that are quite distant from the originally intended domain of equipment operation
and maintenance. These domains include algebra, medicine, computer literacy, and
biology.

DNA and Instructional Trainer rely on a similar combination of relatively
shallow knowledge representation and distinct knowledge types to achieve a high
level of generality. The preliminary successes of these systems indicate that the
correct level of abstraction for distinguishing different types of authoring tools may
be more at the cognitive level of knowledge types (such as concepts vs. procedures)
than at the more surface level of task types (such as investigate vs. advise).8

Up to this point I have shown how usability is at odds with the power/flexibility
of an authoring tool. The only method mentioned thus far that results in both
powerful and usable authoring tools is to limit them to particular domains or
knowledge types. Another method, that of creating "meta-authoring" environments,
is described in a Section 5.6.

8 It is also possible that an appropriate level of abstraction will similar to the "generic tasks"
proposed in the context of expert systems research (Chandrasekaran, B. 1986).

522 T. MURRAY

5.3 Who are the authors? --an authoring skills analysis

The main goal of an ITS authoring system is to make the process of building an ITS
easier. This ease translates into reduced cost and a decrease in the skill threshold for
potential authors. The design specifications of a piece of software are highly
dependent on the assumptions made about the intended prototypical user. In the
case of ITS authoring tools we must ask:

• What is the assumed skill level in: knowledge engineering?
• In multimedia creation and interface design?

• In instructional design and instructional theories?
• In testing or evaluating educational software?
• In the particular subject matter domain of the tutor?
• How much time does the user have available for training?

• For design and development of the tutor?
• How well does the author know the characteristics of the target student

audience?

As this list of questions implies, it will usually require a team of people with
different knowledge and skills to author an ITS. But how fast and easy can
authoring an ITS be? Of course, in part, the answer to this question depends on
what is meant by "an ITS"-- some fairly simple instructional systems have been built
that still qualify as adaptive or intelligent. It also depends on how similar are the
ITSs that we want to build with the tool, as was discussed in the Tradeoffs Section.
Another way to phrase the overall question is: how much of the design process can
be scaffolded or automated? If we identify hard limitations in the answer to this
question, then this will imply constraints on the amount of a) skill, and b) time
required to author an ITS. Below I use a analysis of authoring task complexity to
help address this issue. Four levels of task complexity are defined 1) templates, 2)
relationships, 3) modelling, and 4) behaviors. For now we ignore tasks that clearly
require the skills of a software designer, such as building a plug-in learning
environment interface or creating a complex algorithm needed in student model
diagnosis.

1. Templates and forms. The easiest types of authoring task are filling in
template information, selecting items from pre-defined lists, and answering
prompted questions. Aspects of an authoring tool that clearly reify the main objects
of an ITS and their editable properties through fill-in-the-blanks forms could be
accessible to designers and teachers at all skill levels.

2. Defining object relationships and structures. Though this task seems easy,
defining relationships between objects is a significant conceptual jump over
specifying object properties in templates. Some types of relationships are
straightforward to create, such as connecting an explanation object with a graphic
object, or specifying that the "engine" component is "a part of" an "automobile"

AUTHORING SYSTEMS STATE OF THE ART 523

component. But creating object links at more abstract levels is more difficult. The
primary example of this is the creation of the topic network. It may be easy for most
users to create a concept network that illustrates their informal ideas about how
topics are related. But to design a good topic network, one that expresses the
important pedagogical relationships in a domain and, when traversed according to
some teaching strategy, will result in reasonable and expected tutorial behavior, is
difficult and subtle. One inevitably runs into questions about subtle distinctions
such as whether one topic is a part-of, a-kind-of, or a prerequisite-of another topic.
Questions such as the following arise: are the sub-topics of a topic's prerequisites
also the topic's prerequisites? Reasoning through these situations often requires the
skills attributed to knowledge engineers. The complexity of the task is compounded
by content-strategy interactions, as described in Chapter 15 Section 6. Also, as the
complexity of a system of relationships increases, the task looks more like
modelling. Software designers have learned that building robust models requires
such techniques as data and procedural abstraction, encapsulation, and indirection--
concepts they are difficult for many non-programmers to exploit.

3. Modelling . I believe that it is not possible to author an ITS without
considering the big picture. This includes conceptualizing the intended audience
and their needs; reconceputalizing instruction so that it can be delivered flexibly for
each student; and decomposing content in a way that maintains coherence and
consistence when it is dynamically reconstructed for a student---i.e. ITS authoring
will usually involve modeling. It has been said that building explicit models of
expertise is at the heart of AI work (Clancey 1986). Questions about building
explicit models are also at the heart of ITS authoring. ITSs are complex systems
containing embedded models of several types (roughly characterized as domain,
teaching, and student models). Understanding ITS authoring requires a conceptual
separation of content from instructional method--a reconceptualization of content as
flexible and modular. This is very different from designing the screens that a
student will see and enumerating the possible paths a student can take, as is done in
designing traditional educational software. Building an explicit model of anything is
not an easy task, and requires analysis, synthesis, and abstraction skills along with a
healthy dose of creativity. Even though an authoring tool might be able to reduce
the process to a long sequence of simple atomic steps done in isolation, some degree
of holistic understanding and abstract thinking will eventually have to come into
play. Authoring tools can significantly decrease the cognitive load involved in
various design steps, but it is difficult to reduce the entire design task to low-level
decisions.

4. Defining behavior. ITSs are user-oriented software systems that behave.
Designing good ones involves iterative test trials to make sure they work as
intended. Testing software implies that it will be fixed or debugged. This means
that the designer has to understand the relationship between non-optimal runtime
behavior and information inside the system. Defining and debugging some
behaviors is relatively straightforward, for example: "when this button is pushed
highlight the hint text," and "if the student gets over 80% of the answers correct,
assign mastery to the topic." However, defining control structures, rules, or
algorithms proves to be more difficult, even when authoring tools are provided to

524 T. MURRAY

make the task easier and at a higher level of abstraction (as is done in LAT and
Eon). When the task includes specifying looping/repeating or conditional structures
(including IF/THEN rules) the complexity increases dramatically. This is not
because it is so difficult for users to understand the meaning and local effects of
these structures, but because the emergent global behavior of control structures is
complex. No matter how easy we make it, such tasks are essentially "programming
tasks" and the skills associated with programming are needed. The main difficulty
comes when, inevitably, the system behaves in some way that does not meet the
author's expectations, either do to a bug in the algorithm or an unforeseen
consequence of the interaction of parts. The task then is one of diagnosing and
debugging an algorithm, which takes a programmer's skill. This level of
programming skill is usually part of the skill set of knowledge engineers, who may
not be skilled enough to write, say, a Java application, but do understand the basics
of computer data structures an algorithms.

As mentioned, most ITS authoring will require a team effort. Graphics and
multimedia skills will be needed if the multimedia resources are not already
available. Interface design skills are not necessary for most authoring tools, because
they do not allow the user to design the interface from scratch. As discussed in the
XAIDA Chapter (2) and the DNA Chapter (6), the standard model for creating
training materials in industry assumes separate roles for subject matter expert and
instructional designer. But to simplify our discussion we can temporarily assume
that there is one instructor on the team who has both of these skill sets. We will also
temporarily ignore the skills needed to formatively evaluate the ITS to ensure that it
works as expected. Chapter 15 Section 4.6 describes how the following tasks are
particularly difficult for non-knowledge engineers: curriculum representation,
strategy representation, ontology design, and student model definition. We can
ignore the last two of these as they apply only to very high level authoring
situations. Thus we can narrow down the discussion to one primary question: how
much knowledge engineering skill is needed? I.E. under what situations can a
"regular" instructor or teacher do the bulk of the work in creating the content of an
ITS, and when is a trained knowledge engineer needed on the team? In terms of the
task complexity levels defined above, we can say the following.

Tasks in level 1 are accessible to most teachers and "laypersons" who are
comfortable using computer applications. Tasks at level 2 are already moving
beyond what can be expected of most instructors without substantial training, and
tasks at levels 3 and 4 require significant training or help from a knowledge
engineer. When authoring tools have been empirically evaluated with many users
the lessons learned indicate that completing tasks levels above level 1 require
significant (initially unexpected) levels of training and skill. Van Jolingen (in this
Volume) notes "though SimQuest can take away much of the burden of the
authoring process, the conceptual part of authoring in itself requires considerable
training for the author [and] training and support are necessary." Ainsworth et al.
(this volume) report that in evaluations of REDEEM teachers had the most difficulty
in decomposing the material into modular units. Though the benefits of ITSs come
in large part by supporting a knowledge-based, as opposed to a storyboard metaphor

AUTHORING SYSTEMS STATE OF THE ART 525

for content (see Chapter 15 Section 2.2), REDEEM authors tended to create story-
board-like tutors. Ainsworth et al. note that the studies have contributed to our
understanding of how the average teacher conceptualizes content by highlighting the
important role that narrative plays for them. In numerous evaluations of XAIDA
researchers noted a reluctance of some trainers to reconceptualize their model of
instruction from a linear lesson plan to the more modular one used in the
knowledge-based approach. In formative evaluations of the LAT system researchers
concluded that they overestimated the level of experience that would be achieved by
typical authors. Findings compatible with all of the above studies were found in
evaluations of SimQuest and IDLE-Tool. Until an authoring system has been
evaluated or used by many users who are not affiliated with the originating research
team we should be cautious about claims for its usability.

Some systems, such as XAIDA, and REDEEM, are aimed at authors with very
little training (on the order of several hours), so that any instructor could,
theoretically, built an ITS. This level of skill is on the order of an intermediate level
user of a word processor or spreadsheet program. Other systems, such as RIDES
and Eon, assume that the author will be more skilled. My own belief is that, in
general, ITSs are complex systems and we should expect authors to have a
reasonable degree of training in how to author them, corresponding with a skill level
on the order of database applications, CAD software, 3-D modeling, or scripting in
Excel or Lingo. This does not raise the bar unrealistically high, since this level of
knowledge and creative/analytical skill is used for many common jobs. There are
many thousands of people with proficient levels of these skills, as compared to the
small number who know how to program an ITS from scratch, so having ITS
authoring tools aimed at this level of usability is a substantial improvement. Each
company or school could have one person trained in using an ITS authoring tool.
Fortunately, it is often reasonable to expect an untrained SME or teacher to enter the
bulk of the authored information, and then hand the system over to a more highly
trained person for completion. In the case of the XAIDA project and the D3 Trainer
project, the goal was to allow SMEs to create tutors by authoring domain knowledge
(in XAIDA by describing physical artefacts and demonstrating how they operate,
and in D3 Trainer by defining expert system rules). The instructional knowledge is
contained within these systems, so instructional designers and teachers may not be
needed in the authoring process.

But this design picture is not shared by all. Several Chapters in this volume
show evidence that regular instructors can create tutors with very little training (see
XAIDA, REDEEM, and Instructional Simulator). Such "easy authoring" seems
possible in several situations: 1) when the resulting tutor and content are very
simple; 2) for special purpose authoring systems that are highly tailored a particular
domain and teaching strategy, and 3) for situations in which the author is essentially
customizing an existing tutor, rather than designing one from scratch (and see the
discussion of meta-authoring in Section 5.6).

Most of the highly usable authoring systems simplify authoring by providing a
fixed and relatively uncomplicated model of the domain that can be authored
through templates. We will look at the most usable systems: XAIDA, DNA,
Instructional Simulator, IDLE-Tool, and REDEEM. XAIDA, IDLE-Tool, and

526 T. MURRAY

DNA contain fairly simple (instructor-friendly) domain models and fixed (non-
authoreable) teaching strategies. In XAIDA and Instructional Simulator the domain
is composed of parts, their name and location, their sub-components, etc. In DNA
the content is described as answering what (facts), how (procedures), and why
(concepts and principles) questions. In IDLE-Tool the learning task is divided in to
fixed steps: obtain data, analyze data, and interpret results. In all of these cases the
system has a fixed teaching strategy. REDEEM takes a different tact. It has
essentially no domain model and has a CBT-like open yet shallow content model--
just multimedia pages as in a book. But it allows authors to modify the tutoring
strategy. It simplifies strategy definition by reducing it to parameter settings (as
described above). This puts specifying tutorial behavior at the complexity level of
"templates and forms" (reminiscent of the Swift system's "minimalist ITS
approach").

The question of how easy authoring can be made, and thus what set of skills is
needed by an author is still an open question. We have seen that the amount of
knowledge engineering skill needed can be minimized in constrained situations,
potentially allowing any teacher or trainer to create or customize an ITS.

I should mention that another important class of potential users are educational
theorists. ITS authoring tools should allow theorists to rapidly prototype ITSs and
easily modify their teaching strategies and content to experiment with alternative
curricula and instructional methods (Winne 1991). Evaluations of SimQuest and
REEDEM have included such experimental comparisons of alternate teaching
methods or styles.

Finally, another class of authoring tool users is students. In the SimQuest project
teachers have created learning experiences for students that involve using authoring
domain models and tutors for each other. Arroyo et al. (2001) created an authoring
interface for the AnimalWatch tutor that was specifically for students to be able to
author arithmetic word problems for each other. Initial trials indicate that this task
was quite easy and motivating for them.

5.4 Collaborative authoring

If an ITS is to be created by a team, then the tools should support collaboration.
Several authoring projects have directly addressed collaborative authoring. The IDE
project supported collaboration by having authors enter the design rationale for each
instructional element and decision in the system. Ritter et al.'s vision of tutor agent
components (in this volume) is mean to support collaboration among curriculum
experts (teachers), cognitive scientists/knowledge engineers, and
programmers/database designer s. The DNA project provides tools for a subject-
matter expert to work with several domain experts in developing content and check
for overlap and differences in what they produce. The WEAR system allows
teachers to search for pre-authored problems according to topic and difficulty level.
It monitors the creation of a new problem and notifies the instructor if a similar one
already exists in the database. In the REEDEM project teachers were observed
sharing and critiquing each others tutoring strategies. As mentioned above,

AUTHORING SYSTEMS STATE OF THE ART 527

CREAM Tools supports collaborative authoring with rights management and access
security features.

5.5 Where do the teaching strategies come from?

Another area of active disagreement in the research community is the appropriate
source of instructional expertise. The question regards both embedded, fixed
tutoring expertise and authored tutoring expertise. There is very little agreement on
this front, and the arguments sometimes sound more religious than analytical.
Below I present a somewhat hyperbolic characterization of the arguments.

Some emphasize that the power to determine an ITS's teaching strategy should
rest with the practicing teacher (for example see Chapter 8 on REDEEEM). After
all, they are ones working "in the trenches" (the XAIDA project adopted training
strategies observed "in the wild"). But others argue that practicing teachers are,
first, not very pedagogically adept on the average, and second, not very good at
articulating their knowledge. Systems in the Multiple Knowledge Types category
rely on instructional design theories. ID theories, though primarily prescriptive
and lacking in rigorous experimental verification, have stood the test of time in
countless on- and off-line industry and government training programs. Though their
theories include the most practical and operational prescriptions, some critique
instructional design theorists as being "arm-chair" researchers and systems thinkers.
Some say that instruction via computers is too new to be able to rely on existing
theories, and that we need to rely on empirical evidence from educational
psychologists to determine which teaching strategies are most appropriate under
various conditions. But educational researchers are sometimes criticized for having
amassed decades worth of data which has lead to very few generally agreed upon
operational principles. Perhaps instructional settings are just too complex to hope
for definitive data and analysis. Still others maintain that traditional educational
theory and research are based on outmoded behaviorist theories that do not take into
account the constructivist and situated nature of learning, and that cognitive science
might come to the rescue and show our ITSs how to teach. After all, they know how
the mind works (!). And finally there are some research groups who simply have the
right answer, and reference only their own home-grown theories of learning and
instruction, ignoring outside empirical or theoretical work.

It is too early to ignore any of the sources of inspiration for ITS teaching
strategies: practicing teachers, instructional designers, educational theorists,
cognitive scientists, and innovative mavericks. The best models will most probably
come from a synthesis of theories from several of these areas.

5.6 Meta-level authoring and Flexible Ontologies

As mentioned above, one method for maintaining both depth and usability in an ITS
authoring system is to forgo breadth, i.e. specialize the authoring tool for a specific
type of domain or task. Another approach, which has the potential of maintaining
depth, breadth and usability, is meta-authoring (discussed in more detail in Chapter

528 T. MURRAY

15 Section 4.6). By a meta-authoring system I mean a general purpose authoring
system is used to build or configure special-purpose authoring systems. For
example, ITS authoring shells could be produced for science concepts, human
service/customer contact skills, language arts, and equipment maintenance
instruction. One problem with current special purpose authoring systems is that so
many of them would have to be built to cover a reasonable diversity of tasks or
domains. A proliferation of special purpose tools, each with different underlying
frameworks and user interface conventions, will be hard to learn. Meta-authoring
allows for the proliferation of special-purpose shells with a common underlying
structure, so that inter-domain commonalties can be exploited in both content
creation and in training the authors. A meta-authoring system requires a relatively
high level of skill to use, but relatively few authors would use it. Most ITS authors
would be using the more usable special purpose authoring systems that were built
with the meta-authoring tools.

Current special purpose systems were programmed from scratch. Yet there are
many common features among the diverse authoring tools described in this paper. A
topic or curriculum network authoring tool would be useful to almost any authoring
tool, as would a highly usable authoring tool for procedures or instructional
strategies. Though very few of the authoring systems have tools for constructing the
user interface, an interface building tool would be of use to all of them. Eon was
designed as a meta-authoring tool, (as well as an authoring tool) but this use has not
been realized yet. Jona and Kass (1997) describe an approach similar to meta-
authoring, but in the context of ITS shells (architectures) rather than authoring tools.

An important aspect of meta-authoring is the ability to customize the conceptual
vocabulary or ontology used to represent knowledge. An ontology is shared
vocabulary describing key components, concepts, and properties, along with axioms
that define relationships and constraints for these items (Gruber 1991). Many
authoring systems use a semantic network representation of content but they differ
on the types of nodes and links used. A more flexible approach is to let the author
define this vocabulary. Expert-CML has a variety of common taxonomies for
knowledge and learning objectives that the author can choose from. The Eon system
allows the user to customize the vocabulary of node and link types in its topic
network, the topic properties (such as importance and difficulty), and the
vocabularies used in the student model and strategy editors.

Mizoguchi, Ikeda, and associates (Yayashi et al. 2000, Ikeda et al. 1997,
Mizoguchi & Bourdeau 2000).have been developing ontologies. Mizoguchi et al.
have developed such terminological building blocks for describing instructional
strategies and actions, curriculum and task components, and learner states. Smart-
Trainer is an ITS shell that has been implemented in the domain of electric power
systems. It uses and "ontology-aware" approach that allows authors to build a high-
level conceptual model of a domain and tutoring system before implementing the
details. The system uses the axioms in its ontology in an authoring verification
phase to identify discrepancies in the authored model.

AUTHORING SYSTEMS STATE OF THE ART 529

5.7 Toward interoperability and re-use

Many have called for more interoperability and reusability in educational software
applications and educational e-content. ITSs and ITS authoring tools tend to be
monolithic pieces of code that can not communicate with each other (Roschelle et al.
(1998) calls them "application islands"). Roschelle et al. (pg. 9) observe that the
educational technology community's increasing sophistication in regards to a wide
spectrum of teaching and learning theories has lead to the "unforeseen consequence
[of] fragmentation of the authoring community around particular tools (rather than
learning objectives), with limited ability to share innovation across different
authoring tools." There is considerable redundancy in the design of many of these
systems. Also, it tends to be difficult to extend to new domains or scale up to large
courses. In the best of worlds a project should be able to re-use components of
another project in a "plug-in" fashion. For example, the best Bayesian student
modeler or the most fully functional graphing tool could be re-used by many ITS or
ITS authoring tool design teams. Hodgins & Masie (2002) have identified a set of
related issues, which I list below with additions from Roshelle et al. (1998) and
Ritter et al. (in this volume). Authoring tools should support:

• Interoperatability -- can the system work with other systems? The trend is
away from centralized client-server architectures toward more decentralized
agent-based architectures. Ritter et al. (this volume) note that for applications
to interoperate they need to, at the very least, be "inspectable" -- i.e. one
application can ask another for specific types of information. A higher level of
interoperability involves "record-ability", in which an application is
broadcasting data (for example student behaviors) to any application that cares
to notice (for example a feedback agent). A further level of interoperability
involves "script-ability" which allows one application to control another, for
example a tutorial agent invoking a weather simulator with specific constraints
on the simulation.

• Manageability -- can the overall system track information about the learner and
learning session? One method for this is record-ability, as mentioned above.
But there are many ways to address this issue.

• Re-usability -- can courseware (learning objects) be re-used by applications
and by developers different from the context for it was originally designed?

• Durability and scalability -- will the item remain usable as technology and
standards evolve? Designing software so that it is extensible is one approach.
Extensibility can be achieved by using open source coding or by having a plug-
in architecture. Authoring tools that work with medium sized-domains or (in
the case of on-line systems) with a few users, can experience performance
problems when scaled up to large domains or many simultaneous users.
Integration with off-the-shelf components such as robust database applications
can alleviate this problem.

530 T. MURRAY

• Accessibility -- can the learner or content developer locate and download the
material in a reasonable time? Content repositories, mentioned below, are
addressing this issue.

In order to accomplish any of these objectives common standards are needed. In the
area of application interoperability, several component software architectures have
been developed including OpenDoc (no longer supported by Apple), Active X, and
JavaBeans. Though these architectures may make interoperability a reality, so far
there have been only a few attempts. Roschelle et al. (1998) describe the EduObject
project in which four research groups used OpenDoc to share components of their
learning environments. Koedinger et al. (1998) describe a project in which three
independently developed educational applications were combined using the "MOO
communications protocol" as a communication infrastructure. The applications
were Active Illustrations Lab, an open-ended simulation environment (Forbus &
Falkenhainer 1995); Belvedere, an environment supporting scientific dialoging and
argumentation (Suthers et al. 1997); and a model tracing Tutor Agent that was able
to give feedback to students (Ritter & Koedinger 1997). These two projects were
feasibility demonstrations that did not see extensive use. Others are working on
large scale in-house component based systems (e.g. Cheikes 1995), but a major
bottleneck to interoperability of educational components is the lack of shared open
standards. As stated in Ritter et al. (this volume) an interoperability framework
needs "separate interface and data models which communicate through a fixed
protocol [that] should express events in terms of their semantics, rather than user-
interface implementation."

Several groups have been working toward and using an emerging set of
educational software and learning management system interoperability standards
(including IMS & IEEE LOM (Schoeneing & Wheeler 1997) and ARIADNE
(Forte et al 1997)). The standards address content meta meta-data, content
sequencing, question and test interoperability, learner profiles, and run-time
interaction (see Hodgins & Masei 2002). SCORM (sharable content object
reference model) is becoming a de-facto reference model for integrating the various
standards. There are still many unsolved issues, including how to handle intellectual
property rights in an environment of highly shared components and content, and
how to include more pedagogically descriptive attributes in the standards (see
Suthers 2000, Murray 1998).

Many efforts are underway to develop web-based repositories and catalogues
that give educators and learners easy access to a wide range of educational materials
(including EDUTELLA (Nejdg et al. 2002); OCW & OKI (Kumar & Long 2002);
GEM (Fitzgerald 2001); MERLOT (Wetzel 2001)). These projects have begun to
use meta-data standards to converge on common methods for describing generic
attributes of learning objects. However, this software is currently designed to
facilitates humans searching for educational material. The industry and the research
communities are still far from having repositories of interoperable components that
can be automatically retrieved and used by intelligent tutoring systems shells or
authoring tools.

AUTHORING SYSTEMS STATE OF THE ART 531

6. ITS AUTHORING SYSTEM "REALITY-CHECK" -- USE AND
EVALUATION

In this Section I address the pragmatic questions of use, evaluation, throughput, and
availability of ITS authoring tools. Availability is easy to describe. Several of the
systems described here have become commercial products: Electronic Trainer (a
simplified cousin of ID-Expert), and SIMQUEST. Neither of these have seen
widespread purchasing or use in real educational situations as of yet. In addition
some systems have been used by several groups other than the research group that
developed the system and may be available through special arrangement.

6.1 Authoring tool use

One measure of the viability of an authoring tool is the number and variety of tutors
it has been used to build, and the degree to which the system has been used
independent of the lab in which it was developed. Of course, the fact that a system
has not seen much use does not indicate that its design is not viable. But, since
making usable software requires design iterations based on feedback from user and
field tests, it is reasonable to assume that systems that have not been widely used
will require significant additional work to become robust. It is also important to
note that some systems are the latest in a series of efforts by a particular research
group, so a relatively new and untested system may be built with the cumulative
expertise from previous generations. For example RIDES, DIAG, and Instructional
Simulator are third or fourth generation systems, and REDEEM, SimQuest, and Eon
are second generation systems.

Several of the systems are commercial products, mentioned next. SimQuest is in
use in a number of school systems. Electronic Textbook has been commercialised
as IDXelerator (along with its sister product Instructional simulator, commercialised
as IDVisualizer). A simplified version of CREAM-Tools is available under the
name "Training Office," which has been adopted by a number of companies. Swift is
commercial product, but there is no literature as yet describing its level of use. The
D3 authoring tools has been used to produce three commercial training systems in
the medical sector. Ritter et al. (in this Volume) describe tools used build Cognitive
Tutors, several of which are commercial products being used in over 700 schools.

Table 3 shows a rough estimation of the degree to which various systems have
been used. (The significant changes in this table since the original version of this
paper in 1995 gives a striking picture of now far the field has progressed.) Category
1 is for early prototypes that are not fully functional authoring systems, and have
been tested on a small number of "toy domains." Category 2 contains prototype
systems that are complete authoring tools, most of which have been used to build
several complete tutors, but the tutors were not used in authentic learning or training
contexts. Category 3 systems are a bit more robust or have seen more use than those
in category 2, and most have been used outside of the lab where they were built.
Category 4 systems have been used to build a dozen or more tutors, have built tutors
that have been used in real training situations, and have reached a stage of maturity

532 T. MURRAY

in robustness and user documentation where they have been used relatively
independently of the authoring tool designers.

Table 3: Degree of use of ITS authoring tools

1. Early prototypes and proofs of concept Demonstr8, Expert-CML, IRIS, Training
Express, BioWorld Case Builder, WEAR

2. Evaluated or used prototypes DNA, Eon, IDLE-Tool, LAT, GTE,
MetaLinks, ISD-Expert

3. Moderately evaluated or used Electronic Trainer, REDEEM, XAIDA,
D3 Trainer, DIAG, CREAM-Tools,
Interbook, Swift

4. Heavily used (relatively) RIDES, SIMQUEST, IDE9, CALAT

• SimQuest has been used to create over 20 applications. including physics
(collisions, electricity), biology, chemistry, economics, and geography. These
tutors have been used in middle school and high school physics and chemistry
classes. SMISLE (SimQuest's predecessor) has been used to author half a
dozen systems in various introductory science domains.

• REDEEM has been used to build a Genetics tutor consisting of 12 hours of on-
line content, which was used in a high school classroom. It was also used to
develop an 8-hour tutorial on "understanding shapes" for 7-11 year old children.
and a seven chapter Navy training course on communication and information
systems principles.

• CALAT has been used to build over 300 web-based "courseware packages"
which are being used for in-house training at NTT, where CALAT was
developed.

• RIDES has been used to develop tutors or components of tutors in a number of
research efforts, most of which involved exporting the technology to another
lab. As well as producing tutors for a variety of types of equipment, these
efforts are investigating such issues as immersive VR training, real-time
collaborative environments, diagnostic expert systems, and web-based delivery.

• DIAG has been used to create training applications for electronic fault diagnosis
for a eight devices including a power supplies, a radio receiver, and a warning
system.

• CREAM-Tools have been used in a university biology course and a university
mathematics course, and to create tutors in the domains of Baxter pump
manipulation, Traffic regulations, problem solving strategies, intensive care
unit, and Excel spread sheets.

9 Though IDE was one of the most heavily used systems, it was also one of the earliest. IDE
is now a "legacy system," since it runs on obsolete software (NoteCards) and does not
incorporate multimedia capabilities that are now de rigueur.

AUTHORING SYSTEMS STATE OF THE ART 533

• As mentioned above, XAIDA has been used to develop tutors in diverse
domains, including algebra, medicine, computer literacy, and biology, as well as
device operation and maintenance.

• Instructional Trainer has been used to build tutors for HP 5S1 printer operation
(this tutorial is distributed commercially with the physical product),
ethnographic methods, simple canal theory of operation, and customer service
in the telecommunications industry.

• The three commercially available tutorials produced using D3 Trainer have
been evaluated via field tests for 4 years. It has been used to build case-based
classification tutors in medical domains such as Rheumatology and in other
domains such as Flower Classification.

• IDLE-Tool underwent three informal trials: 21 graduate students produced 10
goal-based scenario (GBS) tutors during a six week graduate seminar; 8 primary
school teachers produced four GBS tutors over a six week period; and eight
graduate students produced GBS tutors in another seminar over a three week
period. The INDIE tool has been used to produce 8 goal based scenario tutors,
including: Immunology Consultant, Is it a Rembrandt, Volcano Investigator,
and Nutrition Clinician.

• Eon has been used to build five prototype tutors covering a wide range of
domain types and instructional methods, including: a tutor that incorporates a
Socratic teaching strategy to remediate common misconceptions in science; a
tutor that teaches a part of Japanese language called “honorifics;” an open-
ended learning-by-doing chemistry workbench environment, and a tutor that
uses a spiral teaching method to teach introductory physics concepts.

• IRIS has been used to create tutors for power plant operator training, computer
program specification, concepts in human resources, and mathematical
symbolic differentiation.

6.2 Authoring tool productivity

ITS authoring tools have the potential for decreasing the effort it takes to build
instructional systems or, with the same effort, increasing the adaptivity, depth, and
effectiveness of instructional systems. A very rough estimate of 300 hours of
development time per hour of on-line instruction is commonly used for the
development time of traditional CAI. We have indications of the development ratios
for some ITS authoring tools. These numbers are very hard to interpret, but give us
hope that cost-effective ITS authoring is possible. One reason it is hard to interpret
these results is that they usually do not include the time for creating graphics or pre-
planning the curriculum design. But what we can say is that there is a strong
indication that authoring tools change coding the domain and/or expert knowledge
in a tutor from the most labor intensive part of the process to the least labor intensive
(as compared with media creation and off-line design analysis)

Many hope to see ITS development times that are an order of magnitude less
than the 300:1 CAI productivity ratio. ID-Expert's goal is a 30:1 ratio. The

534 T. MURRAY

Instructional Simulator reduced the time to create a simulation from 100s of hours
(if programmed from scratch) to a few hours. An informal analysis of Demonstr8
describes a model tracing multi-column addition or subtraction tutor being built in
less than 20 minutes. XAIDA's goal is for a 10:1 productivity ratio. Formative
evaluations to date indicate that in some situations a first-time XAIDA user can
develop a 1-2 hour lesson in 3-4 days, including training.

In three separate studies productivity metrics for the REDEEM system showed
authoring to tutorial time ratios between 2:1 and 3:1 for authoring courses that were
8 to 20 hours in length.

A sixteen month case study of three educators using KAFITS, the precursor to
Eon, to build a 41 topic tutor for high school Statics (representing about six hours of
on-line instruction) resulted in a 100:1 effort ratio. Analysis of time vs.
development task and development role yielded the following: 47% effort by the
SME, 40 % by the "knowledge based managers", and 13% by the knowledge
engineer. Also, design constituted about 15% of the total time, and implementation
the other 85%. A similar breakdown of authoring tasks for use of the CALAT
system yielded these estimates: planning 10%, design 50%, multimedia material
creation 30%, and testing and evaluation 10% of the total time. It was estimated that
development time for CALAT tutors was about the same as traditional, non-adaptive
instructional systems.

The DNA system supports cognitive task analysis, which usually involves
extensive interviews with experts and transcription and analysis of the protocols.
This process usually requires a knowledge engineer working with domain experts
over many months. DNA attempts to "streamline the bulk of the interview,
transcription, and [information] organization process." In evaluations of the DNA
system a collaborative authoring process yielded over 50% of the knowledge base in
a tiny fraction of the development time.

For authoring tools that build tutors with deeper knowledge, much more time is
typically needed. It tool 4 to 9 weeks to use DIAG to build tutors simulating
complex electronic systems of up to 150 components. The problems posed by the
resulting tutorials are solved on the order of 10 minutes each. Some tools have been
developed to make Cognitive Tutors more cost effective but it still takes many man-
years to build a cognitive tutor. However, these are among the very few intelligent
tutors built to date that cover content from a significant percentage of an entire
course.

6.3 Authoring tool evaluation

Because ITS authoring tools are still relatively new, summative evaluations, which
ostensibly prove that an entire system "works," may be less valuable than formative
evaluations, which give indications of what parts of a system do and don't work and
why. A number of qualitative and formative evaluation methods can be used
(Murray 1993). In Section 5.3 we mentioned how results from evaluations of
SimQuest, REDEEM, XAIDA, IDLE-Tool, and LAT. In Section 6.2 we mentioned
system evaluations that had implecations for authoring productivity (XAIDA,

AUTHORING SYSTEMS STATE OF THE ART 535

KAFITS, CALAT, DNA, and DIAG). A summary of other authoring tool
evaluations follows (we do not discuss evaluations of the tutoring systems built by
the authoring tools--in fact very few of these have been done).

REDEEM and XAIDA are (by far) the most heavily evaluated authoring
systems. REDEEM'S predecessor COCA underwent several evaluations. Ten
teachers each using COCA for 2 to 3 hours to build a tutor for the American
Revolution. Teachers' attitudes regarding the ability of AI technology to simulate
reasonable teaching strategies changed from noncommittal to positive. However,
many of the systems features were too complex for teachers, and these problems
lead to the design of REDEEM.

REDEEM has been used in 4 major studies (and several minor studies not
discussed in Ainsworth et al.). Two studies involved an 8-hour tutorial on
"understanding shapes" for 7-11 year old children. One study involved 12-hour
secondary school tutorial in genetics, and the final study involved a seven chapter
Navy training course on communication and information systems principles.

In two of the studies that looked at how instructors can customize intelligent
tutors a novel evaluation method was used. Subjects were given vignettes
describing a number of "virtual students," including descriptions of how they
performed in the subject area over the previous semester. The author's task was,
first, to group the virtual students into similarity classes, and second, to design a
tutoring strategy that met the needs of each of these groups (the REDEEM tools
directly support such student grouping, strategy creation, and assignment of student
groups to strategies). The above method was the primary one used to evaluate the
authoring process. To evaluate student learning Ainsworth et al. designed studies
that compared learning on a REDEEM-delivered intelligent tutor to leaning with
the original non-intelligent courseware d ("vanilla CBT") which served as the
content basis for the intelligent tutor.\

In an analysis of usability, two of the studies found that instructors with no prior
experience with computer-based learning were able to express, represent, and assess
their teaching strategies after only one to 2 hours of training. We mentioned the
REDEEM productivity analysis above.

A "virtual student" study of primary school teachers found strong inter-author
difference in how they grouped virtual students for differential instructional
treatments, and in how they designed teaching strategies for each of these groups. In
contrast, the group of Navy training personnel showed mush less differentiation
among virtual students and teaching strategies. In both situations authors who used
REDEEM to tailor the instructional strategies of tutorial reported more satisfaction
than those who did not. When the tutorial was run these authors recognized the
existence of their personal classroom-based teaching strategies and styles in the
behavior of the tutorial that they authored.

Five separate evaluation studies looked at the effectiveness of REDEEM-
authored ITSs, in comparison to similar CBT tutorials. In the first study 86 15 year
old students used a Genetics tutor in a laboratory setting. There were no significant
difference in outcomes for either high or low achieving students. However, a very
similar study done in a classroom context showed significant differences.
REDEEM-tutored students improved 16% vs. an 8% improvement for vanilla-CBT-

536 T. MURRAY

tutored students. An effect size analysis showed that REDEEM led to an average
0.82 sigma improvement in learning outcomes compared to CBT. In a study using
the Navy-built tutor REDEEM was again significantly better than the vanilla CBT.
REDEEM lead to a 32% pre-to-post test improvement, as compared with a 19%
improvement with the vanilla CBT (effect size 0.76 sigmas).

The other extensively evaluated ITS authoring tool is XAIDA.10 Formative data
was taken as XAIDA was used in eight authoring field studies with an average of
about 10 participants (mostly military training personnel) in each study. As
mentioned, one result was that a 1-2 hour lesson can be developed in 3-4 days. The
framework was found appropriate for a wide variety of domains, as mentioned
above. In addition to formative evaluations of the authoring tools, there have been
13 studies of students using tutors built with XAIDA. These have indicated that
tutors built with the XAIDA framework successfully promote mastery of a wide
range of subjects, and that students acquire robust cognitive structures if they are
motivated learners. Finally, researchers conducted an in-depth study of 17
participants' attitudes and skills as they learned to use XAIDA (only the physical
characteristics shell). Several types of data were gathered, including usability
comments, attitudes, productivity metrics, and knowledge base structural analyses.
Results indicate that the tool can be used to author ITSs rapidly. However, the
training and evaluation focussed on low level authoring skills, and it was unclear
how limitations in higher level design and content analysis skills would effect
authoring and the adoption of such authoring tools by instructors.

Below we briefly describe other authoring tool evaluation studies:

• In evaluations of IDLE-Tool, conclusions included the need for a higher level
view of the curriculum and more conceptually oriented help (as opposed to
interface or task oriented help). Practicing teachers using the system differed
from the graduate students in their higher pedagogical competence and
willingness to work within the limits of the template-based authoring. All users
found the example-based help feature very helpful.

• A formative evaluation of LEAP consisted of user participatory design sessions
with three authors from a population of target users. The users built a working
body of courseware from scratch, and maintained a large body of pre-existing
courseware. Anecdotal usability data indicated that the authoring tool was much
easier and less error prone than previous text-based methods used for
knowledge elicitation.

• A preliminary evaluation of DNA compared the knowledge base of a "measures
of central tendency" (statistics) tutor, built using DNA's automated knowledge
elicitation, with the knowledge base of a benchmark ITS for the same domain.
The benchmark tutor was build from scratch using a lengthy hand-coded
cognitive task analysis, which took several months and resulted in 78

10 Note however that for the most part, only the simplest of XAIDAs four knowledge types
was authored in these trials, i.e. physical characteristics.

AUTHORING SYSTEMS STATE OF THE ART 537

"curriculum units" (topics). Three subjects used DNA to elicit their knowledge
about this domain, and the three resulting knowledge bases were compared with
each other and with the benchmark. Analysis of the results showed that the
three authors had 25%, 49%, and 23% coverage of the 78 curriculum units, with
a combined coverage of 62% over the total of nine hours that the three experts
used the system. That a collaborative authoring effort that took nine hours
resulted in 62% coverage of a knowledge base that took several months to code
by hand indicated that the DNA framework is viable.

Above I mentioned that authoring tools are of significant advantage in evaluating
alternate instructional strategies. In addition to REDEEM, this type of studies was
done with Instructional simulator and SimQuest.

• Instructional Simulator underwent a series of studies (Mills, Lawless, Drake,
and Merrill in press) with elementary students using the canal boat simulation
described in Chapter 7. One test evaluated three variations of explanation: at
every step, only when a user action resulted in no simulation change, and no
explanation at all. The study showed a significant long term retention
improvement when either explanation method was included. A second study
compared three variations on how simulation instructional demonstrations were
given: "Simon says" demonstrations, free exploration demonstrations, and no
demonstrations. Students using to the Simon Says mode outperformed the other
two conditions.

• The SimQuest system has been used to conduct a number of studies on alternate
teaching strategies. The studies looked at variations in learning environments
configuration. Variations in the following aspects of the learning environment
were evaluated in separate studies (see Chapter 1): model progression,
assignment type, and intelligent feedback.

7. FUTURE DIRECTIONS

In 1995 A large scale review of US government-sponsored research and
development in intelligent tutoring systems, looking at 47 funded projects, found
that one third of the total expenditure was on the 11% of the projects developing
authoring tools (Youngblut, 1995). The review concluded that this level of funding
might be premature because there were many basic research issues in ITS needing to
be resolved before authoring systems were generally applicable. However, ITS
authoring tools have matured substantially in the last decade. Several are at or near
commercial quality. Though there are of course many unanswered questions in this
relatively new research area, it seems that there are three related major unknowns.
The first is the extent to which the difficult task of modeling can be scaffolded, as
discussed above. The second question, representing the other side of the coin, is the
degree to which we can identify instructional situations that can be embodied in
special purpose authoring shells that are both specific enough to make authoring
template-based, yet general enough to be attractive to many educators. Third is the

538 T. MURRAY

larger question of whether intelligent tutoring systems will ever be in demand
enough to warrant the effort of building authoring tools for them. Those in the
authoring tools community see this as a chicken-egg problem, since the demand for
ITSs depends in part on their cost, and in part on their perceived effectiveness.
Authoring tools certainly reduce the cost, and they also will make it possible to build
enough systems so that formal and anecdotal evidence will accumulate regarding
ITS effectiveness.

Much more research and development is needed in the field of ITS authoring.
We need more empirical testing using multiple authors and domains; more research
on authoring student models; more complete and standardized ontologies and meta-
data standards; more research on the differential effectiveness of various
computationally explicit instructional strategies; and more exploration of open
component-based architectures. The future of ITS authoring, like the future of ITSs,
depends in part on supply and demand forces. Innovations in software
interoperability, web-based applications, and ubiquitous computing provide a
"technology-push." Increasing demand for scalability, accountability,
personalization, easy access, and cost-effectiveness in computer-based instruction
should provide a sufficient "pull" to bring more of these systems into schools and
market places.

8. REFERENCES

The references and citations to articles describing authoring systems are in a non-
standard format in this Chapter. Citations to the major authoring tool projects are
give by the tool name (e.g. RIDES) rather than the author of a paper (e.g. Munro et
al. 1997). References are listed in an Appendix table grouped according to the
authoring system.

Arroyo, I., Schapira, A. & Woolf, B. (2001). Authoring and sharing worked problems with AWE. Proc.
of Artificial Intelligence in Education (Moore et al. Eds), pp. 527-529.

Bloom, B. S. (1956). Taxonomy of Educational Objectives, Vol. 1. New York: David McKay Co.
Boose, J. H. (1988). "A Survey of Knowledge Acquisition Techniques and Tools." 3rd AAAI-Sponsored

Knowledge Acquisition for Knowledge-Based Systems Workshop, November 1988, pg. 3.1-3.23.
Banff, Canada.

Brusilovsky, P. (1998). Methods and Techniques of Adaptive Hypermedia. In P. Brusilovsky, A. Kobsa,
and J. Vassileva, editors, Adaptive Hypertext and Hypermedia, Chapter 1, pp. 1-44, Kluwer
Academic Publishers, The Netherlands, 1998.

Chandrasekaran,B. (1986). Generic tasks in knowledge based reasoning: high-level building blocks for
expert system design. IEEE Expert, 1(3), pp. 23-30.

Cheikes, B. (1995). Should ITS Designers be Looking for a Few Good Agents? In AIED-95 workshop
papers for Authoring Shells for Intelligent Tutoring Systems.

Clancey, W. J. (1986). "Qualitative Student Models." In Annual Review of Computer Science, pp. 381-
450: Palo Alto, CA.

Collins, J.A., Greer, J.E., & Huang, S.H. "Adaptive assessment using granularity hierarchies and
Bayesian nets." Proceedings of the Third International Conference: ITS '96. Frasson, Gautheir &
Lesgold (Eds). Springer, pp. 569-577.

Fitzgerald, M (2001). The Gateway to Educational Materials: An evaluation Study: Year 2. ERIC
Clearinghouse technical report.

Forbus, K & Falkenhainer, B. (1995). Scaling up Self-Explanatory Simulators: Polynomial-time
Compilation. Proceedings of IJCCAI-95, Montreal, Canada.

AUTHORING SYSTEMS STATE OF THE ART 539

Forte, E., Wentland, M. & Duval, E. (1997). The ARIADNE Project: Knowledge Pools for Computer-
based and Telematics-supported Classical, Open, and Distance Learning. European Journal of
Engineering Education 22(1).

Gagne, R. (1985). The Conditions of Learning and Theory of Instruction. New York: Holt, Rinehard, and
Winston.

Goodkovsky, V.A., Kirjutin, E.V. & Bulekov, A.A. (1994). Shell, tool, and technology for Pop Class ITS
production. In P. Brusilovsky, S. Dikareve, J.Greer & V. Pertrushin (Eds). Proc. of East-West
International Conference on Computer Technology in Education. Part 1, pp. 87-92. Crimea, Ukraine.

Goodyear, P. & Johnson, R. (1990). Knowledge-based authoring of knowledge-based courseware. In
Proc. of ICTE-7, Brussels:CEP Consultants LTD.

Hodgins, W. & Massie, E. (2002). Making Sense of Learning Specifications and Standards: A decision
makers guide to their adoption. MASIE Center technical report, Saratogy Springs, NS.

Hodgins, W. et al. (2002). Making Sense of Learning Specifications & Standards: A Decision Maker's
Guide to their Adoption. Industry Report by the MASIE Center: Saratoga Springs, NY.

Hoffman, R. (1987). "The Problem of Extracting the Knowledge of Experts From the Perspective of
Experimental Psychology." AI Magazine, pp. 53-67, Summer 1987.

Jonassen, D.H. & Reeves, T.C (1996). Learning with Technology: Using Computers as Cognitive Tools.
In D.H. Jonassen, (Ed.) Handbook of Research on Educational Communications and Technology.
New York: Scholastic Press, Chapter 25.

Koediner, K.R, Suthers, D.D., Forbus, K.D. (1998). Component-based construction of a science learning
space. In the Proceedings of Intelligent Tutoring Systems 4th International Conference, Goettl, Half,
Redfield, & Shute (Eds), 166-175.

Koedinger, K., & Anderson, J. (1995). Intelligent tutoring goes to the big city. Int. J. of Artificial
Intellignece in Education, 8, 30-43.

Kumar, M.S.V. & Long , P. (2002) MITs Open Courseware Initiative (OCW) and Open Knowledge
Initiative (OKI). At www.cren.net/know/techtalk/mit.html.

Mark, M.A. & Greer, J.E. (1991). The VCR Tutor: Evaluating instructional effectiveness. In Hammond,
& Gentern (Eds.) Proceedings of the 13th Annual Conference of the Cognitive Science Society,
Lawrence Erlbaum Asso., Hillsdale, NJ., 564-569.

McCalla, G. & Greer, J. (1988). "Intelligent Advising in Problem Solving Domains: The SCENT-3
Architecture." Proceedings of ITS-88, pp. 124-131. June, 1988, Montreal, Canada.

McMillan, S., Emme, D., & Berkowitz, M. (1980). Instructional Planners: Lessons Learned. In Psotka,
Massey, & Mutter (Eds.), Intelligent Tutoring Systems, Lessons Learned. Hillsdale, NJ: Lawrence
Erlbaum, pp. 229-256.

Merrill, M.D. (1983). Component Display Theory. In Instructional-design theories and models: An
overview of their current status,. C.M. Reigeluth. (Ed). Hillsdale, NJ: Lawrence Erlbaum, pp. 279 -
333.

Murray, T (1998). A Model for Distributed Curriculum on the World Wide Web. J. of Interactive Media
in Education 98(5). On-line journal at http://www-jime.open.ac.uk/.

Murray, T. (1993). Formative Qualitative Evaluation for “Exploratory” ITS research. J. of AI in
Education. 4(2/3), pp. 179-207.

Murray, T. (1996b). Toward a Conceptual Vocabulary for Intelligent Tutoring Systems. Working Paper.
Murray, T. (1997) Expanding the knowledge acquisition bottleneck for intelligent tutoring systems.

International J. of Artificial Intelligence in Education. Vol. 8 , No. 3-4, pp. 222-232.
Murray, T., Winship, L., Bellin, R. & Cornell, M. (2001). "Toward Glass Box Educational Simulations:

Reifying Models for Inspection and Design." In workshop proceedings for External Representations
in AIED at AIED-2001. May 2001, San Antonio, TX.

Nejdl, W., Wold, B., Staab, S., & Tane, J. (2002). EDUTELLA: Searching and Annotating Resources
within and RDF-based P2P Network. White paper at edutella.jxta.org.

Ohlsson, S. (1987). Some Principles of Intelligent Tutoring. In Lawler & Yazdani (Eds.), Artificial
Intelligence and Education, Volume 1. Ablex: Norwood, NJ, pp. 203-238.

Person, N. K., Bautista, L., Graesser, A. C., Mathews, E. & The Tutoring Research Group (2001).
Evaluating student learning gains in two versions of AutoTutor. In J. D. Moore, C. L Redfield, & W.
L. Johnson (Eds.), Artificial Intelligence in Education: AI–ED in the Wired and Wireless Future (pp.
286–293). Amsterdam: IOS Press.

Reigeluth, C. (1983). The Elaboration Theory of Instruction. In Reigeluth (Ed.), Instructional Design
Theories and Models. Hillsdale, NJ: Lawrence Erlbaum.

540 T. MURRAY

Ritter, S. & Blessing, S. (1998). Authoring tools for component-based learning environments. Journal of
the Learning Sciences,. 7(1) pp. 107-132.

Ritter, S. & Koedinger, K.R. (1997). An architecture for plug-in tutoring agents. In J. of Artificial
Intelligence in Education, 7 (3/4) 315-347.

Roschelle, J., Kaput, J., Stroup, W. & Kahn, T.M. (1998). Scaleable integration of educational software:
Exploring the promise of component architectures. J. of Interactive Media in Education, 98 (6).
[www-jime.open.ac.uk/96/6]

Rosé, C. P., Jordan, P., Ringenberg, M., Siler, S., VanLehn, K., & Weinstein, A. (2001). Interactive
conceptual tutoring in Atlas–Andes. In J. D. Moore, C. L Redfield, & W. L. Johnson (Eds.), Artificial
Intelligence in Education: AI–ED in the Wired and Wireless Future (pp. 256–266). Amsterdam: IOS
Press.

Schoening, J. & Wheeler, T. (1997). Standards--The key to educational reform. In IEEE Computer,
March 1997.

Shaw, M. L. G. & Gaines, B. R. (1986). "Advances in Interactive Knowledge Engineering." Submitted to
Expert Systems '86. University of Calgary, Alberta, CANADA: Dept. of Computer Science.

Shute, V. J., and Psotka, J., (1996). Intelligent tutoring systems: Past, present, and future. In D. Jonassen
(Ed.), Handbook of Research for Educational Communications and Technology (pp. 570-600). New
York, NY: Macmillan.

Shute, V.J. and Regian, J.W. (1990). Rose Garden Promises of Intelligent Tutoring Systems: Blossom or
Thorn? Presented at Space Operations, Automation and Robotics Conference, June 1990,
Albuquerque, NM.

Suthers, D. (2000). Using learning object meta-data in a database of primary and secondary school
resources. Proc. of International Conf. on Computer in Education, November 2000, Taipei, Taiwan.

Suthers, D., Toth, E., 7 Weiner, A. (1997). An integrated approach to implementing collaborative inquiry
in the classroom. Computer Supported Collaborative Learning (CSCL-97), Toronto, December,
1997.

Wasson, B. (1992) PEPE: A computational framework for a content planner. In S.A. Dijkstra, H.P.M.
Krammer & J.J.G. van Merrienboer (Eds), Instructional Models in Computer-Based Learning
Environments. NATO ASI Series F. Vol. 104 (pp. 153-170). New York: Sringer-Verlag.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Los Altos, CA: Morgan Kaufmann.
Wetzel, M., & Hanley, G. (2001). Evaluation of MERLOT Tools, Processes, and Accomplishments.

Center for Usability in Design and Assessment: Long Beach CA.
White, B. & Frederiksen, J. (1995). Developing Metacognitive Knowledge and Processes: The Key to

Making Scientific Inquiry and Modeling Accessible to All Students. Technical Report No CM-95-
04. Berkeley, CA: School of Education, University of California at Berkeley.

Youngblut, C., 1995. Government-Sponsored Research and Development Efforts in the Area of
Intelligent Tutoring Systems: Summary Report. Inst. for Defense Analyses Paper No. P-3058,
Alexandra VA.

AUTHORING SYSTEMS STATE OF THE ART 541

APPENDIX

Below is a table of the ITS authoring tools discussed in this paper, with selected
references for each.

BioWorld-Case
Builder

Lajoie, S., Faremo, S. & Wiseman, J. (2001). A knowledge-based
approach to designing authoring tools: From tutor to author. In
Proc. of Artificial Intelligent in Education, J.D. Moore C.
Redfield, L.W. Johnson (Eds). ISO Press, pp77-86.

CALAT (&
CAIRNEY)

Kiyama, M., Ishiuchi, S., Ikeda, K., Tsujimoto, M. & Fukuhara, Y.
(1997). Authoring Methods for the Web-Based Intelligent CAI
System CALAT and its Application to Telecommunications
Service. In the Proceedings of AAAI-97 , Providence, RI.

CREAM-TOOLS See Chapter 10 in this volume.
Frasson, C., Nkambou, R., Gauthier, G., Rouane, K. (1998). An

authoring model and tools for curriculum development in
intelligent tutoring systems. Working Paper available from the
authors.

Nkambou, R., Gauthier, R., & Frasson, M.C. (1996). CREAM-
Tools: an authoring environment for curriculum and course
building in an ITS. In Proceedings of the Third International
Conference on Computer Aided Learning and Instructional
Science and Engineering. New York: Springer-Verlag.

D3-TRAINER Schewe, S., Reinhardt, B., Bestz, C. (1999). Experiences with a
Knowledge Based Tutoring System for Student Education in
Rheumatology. In XPS-99: Knowledge Based Systems: Survey
and Future Direction, 5th Biannual German Conference on
Knowledge Based Systems, Lecture Notes in Artificial
Intelligence 1570, Springer.

Puppe, F., Reinhardt, B. (1996). Generating Case-oriented training
from Diagnostic Expert Systems. In Machine Mediated
Learning 5 (3&4), 199-219.

Reinhardt, B. (1997). Generating Case-oriented Intelligent tutoring
systems. In Proc. of AAAI Fall Symposium, ITS Authoring
Systems, November 1997.

542 T. MURRAY

DEMONSTR8 (&
TDK, PUPS)

See Chapter 4 in this volume.
Blessing, S.B. (1997). A programming by demonstration authoring

tool for model tracing tutors. Int. J. of Artificial Intelligence in
Education. Vol. 8 , No. 3-4, pp 233-261.

Anderson, J. R. & Pelletier, R. (1991). A development system for
model tracing tutors. In Proc. of the International Conference
on the Learning Sciences, Evanston, IL, 1-8.

Anderson, J. & Skwarecki, E. (1986). The Automated Tutoring of
Introductory Computer Programming. Communications of the
ACM, Vol. 29 No. 9. pp. 842-849.

DIAG (& ReAct,
DM3)

See Chapter 5 in this volume.
Towne, D.M. (1997). Approximate reasoning techniques for

intelligent diagnostic instruction. International J. of Artificial
Intelligence in Education. Vol. 8 , No. 3-4, pp. 262-283.

Towne, D.M. (2002). Advanced Techniques for IETM Development
and Delivery, Proceedings Human Factors and Ergonomics
Society, 46th Annual Meeting, Baltimore, MD, October 3,
2002.

DNA/SMART See Chapter 6 in this volume.
Shute, V.J. (1998). DNA - Uncorking the bottleneck in knowledge

elicitation and organization. Proceedings of ITS-98, San
Antonio, TX, pp. 146-155.

Shute, V. J., Torreano, L. A., and Willis, R. E. (2000). Tools to aid
cognitive task analysis. In S. Chipman, V. Shalin, & J.
Schraagen (Eds.),Cognitive Task Analysis. Hillsdale, NJ:
Erlbaum Associates. .

Shute, V. J. & Torreano, L., & Willis, R. (2000). DNA: Towards an
automated knowledge elicitation and organization tool. In S. P.
Lajoie (Ed.) Computers as Cognitive Tools, Volume 2.
Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 309-335.

ECSAIWeb Sanrach, C. & Grandbasien, M. (2000). ECSAIWeb: A Web-based
authoring system to create adaptive learning systems. In
Proceedings of Adaptive Hypermedia 2000.

EON (& KAFITS) See Chapter 11 in this volume.
Murray, T. (1998). Authoring knowledge-based tutors: Tools for

content, instructional strategy, student model, and interface
design. J. of the Learning Sciences, Vol. 7. No. 1, pp. 5-64.

Murray, T. (1996). Special Purpose Ontologies and the
Representation of Pedagogical Knowledge. In Proceedings of
the International Conference on the Learning Sciences, (ICLS-
96), Evanston, IL, 1996. Charlottesville, VA: AACE.

Murray, T. (1996). From Story Boards to Knowledge Bases: The
First Paradigm Shift in Making CAI "Intelligent.". Proceedings
of the ED-Media 96 Conference, Boston, MA, June 1996, pp.
509-514.

AUTHORING SYSTEMS STATE OF THE ART 543

EXPERT-CML Jones, M. & Wipond, K. (1991). Intelligent Environments for
Curriculum and Course Development. In Goodyear (Ed.),
Teaching Knowledge and Intelligent Tutoring. Norwood, NJ:
Ablex.

GETMAS Wong, W.K. & Chan, T.W. (1997). A Multimedia authoring system
for crafting topic hierarchy, learning strategies, and intelligent
models. International J. of Artificial Intelligence in Education,
Vol. 8, No 1, pp. 71-96.

GTE Van Marcke, K. (1998). GTE: An epistemological approach to
instructional modeling. Instructional Science, Vol. 26, pp 147-
191.

Van Marcke, K. (1992). Instructional Expertise. In Frasson, C.,
Gauthier, G., & McCalla, G.I. (Eds.) Procs. of Intelligent
Tutoring Systems '92. New York: Springer-Verlag.

Instructional
Simulator
(&Electronic
Textbook,
IDVisualizer,
IDXelerator, ID-
EXPERT,
Electronic Trainer,
ISD-Expert)

See Chapter 7 in this volume.
Merrill, M.D., & ID2 Research Group (1998). ID Expert: A Second

generation instructional development system. Instructional
Science, Vol. 26, pp. 243-262.

Merrill, M. D. (2001). Components of instruction: toward a
theoretical tool for instructional design. Instructional Science.
29(4/5), 291-310.

Mills, R. J., Lawless, K. A., Drake, L., & Merrill, M. D. (in press).
Procedural knowledge in a computerized learning environment.

IDE (& IDE
Interpreter)

Russell, D. (1988). "IDE: The Interpreter." In Psotka, Massey,
&Mutter (Eds.), Intelligent Tutoring Systems, Lessons Learned.
Hillsdale, NJ:Lawrence Erlbaum.

Russell, D., Moran, T. & Jordan, D. (1988). The Instructional
Design Environment. In Psotka, Massey, & Mutter (Eds.),
Intelligent Tutoring Systems, Lessons Learned. Hillsdale, NJ:
Lawrence Erlbaum.

544 T. MURRAY

IDLE-Tool (&
IMAP, INDIE,
GBS-architectures)

See Chapter 12 in this volume.
Bell, B. (1998). Investigate and decide learning environments:

Specializing task models for authoring tools design. J. of the
Learning Sciences, Vol. 7. No. 1.

Jona, M. & Kass, A. (1997). A Fully-Integrated Approach to
Authoring Learning Environments: Case Studies and Lessons
Learned. In the Collected Papers from AAAI-97 Fall
Symposium workshop Intelligent Tutoring System Authoring
Tools. AAAI-Press.

Dobson, W.D. & Riesbeck, C.K. (1998). Tools for incremental
development of educational software interfaces. In
Proceedings of CHI-98.

Qiu, L., Riesbeck, C.K., and Parsek, M.R. (2003). The Design and
Implementation of an Engine and Authoring Tool for Web-
based Learn-by-doing Environments. Proc. of World Conf. on
Educational Multimedia, Hypermedia & Telecommunications
(ED-MEDIA 2003). June 23-28, 2003, Honolulu, HA. AACE.

InterBook (&
ELM-Art,
NetCaoch)

See Chapter 13 in this volume.
Brusilovsky, P., Schwartz, E., & Weber, G. (1996). A Tool for

Developing Adaptive Electronic Textbooks on WWW. Proc.
of WebNet-96, AACE.

Brusilovsky, P, Schwartz, E. & Weber, G. (1996). ELM -ART: An
Intelligent Tutoring System on the Work Wide Web. In
Proceedings of ITS-96, Frasson, Gauthier, Lesgold (Eds.),
Springer: Berlin, 1996. pp. 261-269.

IRIS See Chapter 9 in this volume.
Arruarte, A., Fernandez-Castro, I., Ferrero, B. & Greer, J. (1997).

The IRIS shell: How to build ITSs from pedagogical and design
requisites. International J. of Artificial Intelligence in
Education. Vol. 8 , No. 3-4, pp. 341-381.

LAT (LEAP
Authoring Tool)

See Chapter 14 in this volume.
Sparks, R. Dooley, S., Meiskey, L. & Blumenthal, R. (1999). The

LEAP authoring tool: supporting complex courseware
authoring through reuse, rapid prototyping, and interactive
visualizations. Int. J. of Artificial Intelligence in Education.

Dooley, S., Meiskey, L., Blumenthal, R., & Sparks, R. (1995).
Developing reusable intelligent tutoring system shells. In
AIED-95 workshop papers for Authoring Shells for Intelligent
Tutoring Systems.

MetaLinks Murray, T., Condit, C., & Haaugsjaa, E. (1998). MetaLinks: A
Preliminary Framework for Concept-based Adaptive
Hypermedia. Workshop Proceedings from ITS-98 WWW-Based
Tutoring Workshop., San Antonio, Texas, 1998.

REDEEM (&
COCA)

See Chapter 8 in this volume.
Major, N., Ainsworth, S. & Wood, D. (1997). REDEEM:

Exploiting symbiosis between psychology and authoring
environments. International J. of Artificial Intelligence in
Education. Vol. 8 , No. 3-4, pp. 317-340.

Major, N. (1995). Modeling Teaching Strategies. J. of AI in
Education, 6(2/3), pp. 117-152.

AUTHORING SYSTEMS STATE OF THE ART 545

Education, 6(2/3), pp. 117-152.
Major, N.P. & Reichgelt, H (1992). COCA - A shell for intelligent

tutoring systems. In Frasson, C., Gauthier, G., & McCalla, G.I.
(Eds.) Procs. of Intelligent Tutoring Systems '92. New York:
Springer-Verlag.

RIDES (& IMTS,
RAPIDS, and see
DIAG)

See Chapter 3 in this volume.
Munro, A., Johnson, M.C., Pizzini, Q.A., Surmon, D.S., Towne,

D.M, & Wogulis, J.L. (1997). Authoring simulation-centered
tutors with RIDES. International J. of Artificial Intelligence in
Education. Vol. 8 , No. 3-4, pp. 284-316.

Towne, D.M., Munro, A., (1988). The Intelligent Maintenance
Training System. In Psotka, Massey, & Mutter (Eds.),
Intelligent Tutoring Systems, Lessons Learned. Hillsdale, NJ:
Lawrence Erlbaum.

SIMQUEST (&
SMISLE)

See Chapter 1 in this volume.
Jong, T. de & vanJoolingen, W.R. (1998). Scientific discovery

learning with computer simulations of conceptual domains.
Review of Educational Research, Vol. 68 No. 2, pp. 179-201.

Van Joolingen, W.R. & Jong, T. de (1996). Design and
implementation of simulation-based discovery environments:
The SMISLE solution. Int. J. of Artificial Intelligence in
Education 7(3/4). pp. 253-276.

Smart Trainer (&
FITS, ontology-
based tools)

Ikeda, M. & Mizoguchi, R. (1994). FITS: A Framework for ITS--A
computational model of tutoring. J. of Artificial Intelligence in
Education 5(3) pp. 319-348.

Mizoguchi, R., Sinitsa, K., Ikeda, M. (1996). Knowledge
Engineering of Educational Systems for Authoring System
Design. In Proceedings. of EuroAIED-96, Lisbon, pp. 593-600.

Ikeda, M., Seta, K. & Mizoguchi, R. (1997). Task ontology makes it
easier to use authoring tools. Proc. of IJCAI-97, Nagoya,
Japan.

Mizoguchi, R. & Bourdeau, J. (2000). Using ontological
engineering to overcome common AI-ED problems Int. J. of
Artificial Intelligence and Education, Vol. 11. pp 107-121.

Yayashi, Y., Ideda, M., Seta, K., Kakusho, O. & Mizoguchi, R.
(2000). Is what you write what you get?: An operational model
of training scenario. Proc. of Intelligent Tutoring Systems
2000.

Swift (&
DOCENT, Study)

Winne P.H. (1991). Project DOCENT: Design for a Teacher's
Consultant. In Goodyear (Ed.), Teaching Knowledge and
Intelligent Tutoring. Norwood, NJ: Ablex.

Winne, P. & Kramer, L. (1988). "Representing and Inferencing with
Knowledge about Teaching: DOCENT." Proceedings of ITS-
88. June 1988,Montreal, Canada.

TANGOW Carro, R.M., Pulido, E.., Rodriquies, P. (2002). An authoring tool
that automates the process of developing task-based adaptive
courses on the web. J. of AI and Education.

546 T. MURRAY

TRAINING
EXPRESS

Clancey, W. & Joerger, K. (1988). “A Practical Authoring Shell for
Apprenticeship Learning.'' Proceedings of ITS-88, 67-74. June
1988, Montreal.

WEAR Virvou, M & Moundridou, M. (2001). Adding an instructor
modeling component to the architecture of ITS authoring tools.
Int. J. of Artificial Intelligence in Education 12(2), pp 185-211.

XAIDA See Chapter 2 in this volume.
Hsieh, P., Halff, H, Redfield, C. (1999). Four easy pieces:

Developing systems for knowledge-based generative
instruction. Int. J. of Artificial Intelligence in Education.

Wenzel, B., Dirnberger, M., Hsieh, P., Chudanov, T., & Halff, H.
(1998). Evaluating Subject Matter Experts' Learning and Use of
an ITS Authoring Tool. Proceedings of ITS-98, San Antonio,
TX, pp. 156-165.

Redfield, C.L., (1996). "Demonstration of the experimental
advanced instructional design advisor." In the Third
International Conference on Intelligent Tutoring Systems,
Montreal, Quebec, Canada, June 12-14, 1996

